Главная > Основы теории теплообмена
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

26.10. КОМБИНИРОВАННЫЙ РАДИАЦИОННЫЙ ТЕПЛООБМЕН

Реальные условия перуоса массы и энергии в различного рода теплотехнических процессах и явлениях природы характеризуются сложным комплексом взаимосвязанных явлений, включающих процессы радиационного, кондуктивж i конвективного теплообмена. Радиационно-кондуктивный теплообмен — к из наиболее распространенных видов теплообмена в природе и техник

Математическая форму овка задачи о радиационно-кондуктивном теплообмене вытекает из уравнения энергии, дополненного соответствующими граничными условиями. В частности, при исследовании радиационно-кондуктивного теплообмена в плоском слое поглощающей и излучающей среды с непрозрачными серыми границами задача сводится к решению уравнения энергии

    (26.10.2)

с граничными условиями

Здесь — безразмерная плотность потока результирующего излучения; — критерий радиационно-кондуктивного теплообмена; — критерий зависимости теплопроводности среды от температуры; — безразмерная температура в сечении слоя толщиной .

Уравнение (26.10.1) представляет собой нелинейное интегро-дифференциальное уравнение, так как в соответствии с уравнением (26.9.13) описывается интегральным выражением, а искомое значение температуры представлено в уравнении (26.10.1) как в явном, так и в неявном виде через равновесное значение плотности потока излучения:

На рис. 26.19 даны результаты решения уравнения (26.10.1), полученные Н. А. Рубцовым и Ф. А. Кузнецовой сведением его к интегральному уравнению с последующим численным решением на ЭВМ методом Ньютона. Приведенные результаты по температурному распределению в слое поглощающей среды с осредненным по частоте значением коэффициента объемного поглощения свидетельствуют о принципиальной важности учета совместного, радиационно-кондуктивного взаимодействия в переносе суммарной тепловой энергии.

Рис. 26.19. Температурное распределение в слое поглощающей среды оптической толщины при

Обращает на себя внимание чувствительность эффектов взаимодействия к оптическим свойствам границ (особенно для малых значений критерия радиационно-кондуктивного теплообмена: .

Снижение излучательной способности горячей стенки (см. рис. 26.19) ведет к перераспределению ролей радиационной и кондуктивной составляющих потока тепловой энергии. Роль излучения в теплоотдаче горячей стенки падает, и примыкающая к ней среда нагревается за счет кондукции от стенки. Последующий перенос тепловой энергии к холодной стенке складывается из кондукции и излучения за счет собственного излучения среды, при этом температура среды снижается по сравнению с тем значением, которое имела бы среда в случае одного кондуктивного теплопереноса. Смена оптических свойств границ ведет к коренной перестройке температурных полей.

В последние годы в связи с широким внедрением криогенной техники принципиально важной оказалась проблема теплообмена излучением при криогенных температурах (исследования оптических свойств, эффективности теплоизоляции в сверхпроводящих устройствах и криостатах). Однако и здесь трудно представить себе процессы радиационного теплообмена в рафинированном виде. На рис. 26.20 приведены результаты экспериментальных исследований, выполненных Н. А. Рубцовым и Я. А. Бальцевичем и отображающих кинетику температурных полей в системе металлических экранов при температурах жидкого азота и гелия. Там же представлен расчет установившегося температурного поля по уравнениям (26.4.1) в предположении, что основной механизм переноса тепла — излучение. Расхождение экспериментальных и расчетных результатов свидетельствует о наличии дополнительного, кондуктивного механизма переноса тепла, связанного с наличием между экранами остаточных газов. Следовательно, анализ подобной теплопередающей системы также связан с необходимостью рассматривать взаимосвязанный радиационно-кондуктивный теплообмен.

Простейшим примером комбинированного радиационно-конвективного теплообмена является перенос тепла в плоском слое поглощающего газа, вдуваемого в турбулентный поток высокотемпературного газа, обтекающего проницаемую пластину. С подобного рода постановками задач приходится сталкиваться как при рассмотрении течения в окрестности лобовой точки, так и при анализе оттеснения пограничного слоя интенсивным вдувом поглощающего газа через пористую пластину.

Проблема в целом сводится к рассмотрению следующей краевой задачи:

при граничных условиях

    (26.10.4)

Здесь — критерий Больцмана, характеризующий радиационно-конвективное соотношение составляющих потока тепла в среде с постоянными теплофизическими свойствами — характеристические значения (в невозмущенной области либо на границе неравновесной системы) соответственно скорости и температуры; — безразмерная функция распределения скорости в области оттеснения пограничного слоя.

На рис. 26.21 представлены результаты численного решения задачи (26.10.3) —(26.10.4) для частного случая: ; степень черноты проницаемой пластины ; излучательная способность набегающего потока для различных значений Во. Как видно, в случае малых Во, характеризующих низкую интенсивность подвода газа через пористую пластину, температурный профиль формируется за счет радиационно-конвективного теплообмена. По мере увеличения Во роль конвекции в формировании температурного профиля становится преобладающей. С ростом оптической толщины слоя температура несколько увеличивается при малых Во и соответственно уменьшается по мере увеличения Во.

На рис. 26.22 построена зависимость характеризующая вдув поглощающего газа, гэтребного для поддержания теплоизолированного состояния пластины в зависимости от оптической толщины слоя оттеснения. Отмечается резко выраженная зависимость критерия Во от при малых , когда незначительное присутствие поглощающей компоненты газа позволяет заметно снизить расход вдуваемого газа. Эффективным оказывается создание высоко-отражающей поверхности, при условии что оптическая толщина вдуваемого газа невелика Учет селективного характера поглощения излучения в рассматриваемых условиях не вносит принципиальных изменений в характер температурных профилей. Этого нельзя сказать о потоках излучения, расчет которых без учета оптических окон прозрачности ведет к серьезным погрешностям.

Рис. 26.21. Температурное распределение в слое завесы с оптической толщиной

Рис. 26.20. Расчетная и экспериментальная кинетика температурных полей в системе металлических экранов при температурах жидкого азота и гелия ( — номер экрана; время, ч)

Рис. 26.22. Зависимость Во от оптической толщины слоя при и соответственно

Принципиальная важность учета селективности излучения в тепловых расчетах неоднократно отмечается в работах Л. М. Бибермана, посвященных решению сложных задач радиационной газовой динамики.

Помимо прямых численных методов исследования комбинированного радиационно-конвективного теплообмена определенный практический интерес представляют приближенные способы расчета. В частности, рассматривая предельный закон теплообмена в турбулентном пограничном слое при относительно слабом воздействии теплового излучения

    (26.10.5)

полагаем, что представляет собой безразмерный комплекс радиационно-конвективного теплообмена, где — суммарный критерий Стентона, отображающий турбулентно-радиационный перенос тепла на стенку. При этом Ест, где — суммарный тепловой поток на стенке, имеющий конвективную и радиационную составляющие.

Турбулентный тепловой поток q аппроксимируем, как обычно, полиномом третьей степени коэффициенты которого определяются из граничных условий:

где Е — безразмерная плотность полусферического результирующего излучения во внутренних граничных точках пограничного слоя.

В граничные условия (26.10.6) включено уравнение энергии, составленное соответственно для условий околостенной области и на границе невозмущенного потока. Учитывая, что , безразмерный параметр , необходимый для вычисления записываем следующим образом:

    (26.10.7)

Заметим, что граничные условия (26.10.6) определялись принятым условием образования вблизи поверхности, обтекаемой излучающей средой, теплового пограничного слоя. Это существенное обстоятельство позволило полагать

, что выполняется в условиях преобладающей

конвекции.

Значения и определяются из анализа решений относительно плотности результирующего излучения применительно к условию замкнутой системы, составляющей пограничный слой. Турбулентный пограничный слой рассматривается как серая поглощающая среда с коэффициентом поглощения не зависящим от температуры . Обтекаемая поверхность — это серое, оптически однородное изотермическое тело . Невозмущенная часть потока, за пределами пограничного слоя, излучает как объемное серое тело , не отражающее со своей поверхности и находящееся при температуре невозмущенного потока . Все это позволяет воспользоваться результатами предыдущего рассмотрения переноса излучения в плоском слое поглощающей среды с той существенной разницей, что здесь может быть учтено лишь однократное отражение от поверхности обтекаемой пластины.

Подставляя в выражение (26.10.5) значения (см. гл.21) и для случая абсолютно черной поверхности , сводим решение задачи к отысканию из интегрального соотношения

Решение этого интегрального соотношения относительно может быть получено приближенно, путем разложения подынтегральной функции в ряд. Вводя подстановку затем разлагая подынтегральную функцию в биномиальный ряд относительно и интегрируя его почленно, сводим уравнение (26.10.8) к ряду, сходящемуся при условии что ограничивает его применимость областью Ограничиваясь первыми тремя членами, получаем расчетное выражение в виде рекуррентной формулы

    (26.10.9)

Эта формула позволяет сравнительно просто определять численные значения методом последовательных приближений (порядок приближения i обычно не превышает двух) при условии, что а и b определены. Для случая интенсивного теплообмена, когда при коэффициенты, представленные в рекуррентной формуле (26.10.9), определяются следующим образом:

    (26.10.10)

    (26.10.11)

где — поглощательная способность пограничного слоя В качестве примера рассмотрим безразмерный параметр теплообмена для случая обтекания пластины при излучающим газом, являющимся в своей невозмущенной части оптически плотным . Расчет проводим, пользуясь итерационным выражением (26.10.9). Точность расчета ограничивается вторым приближением, а область расчетных значений — условием .

Рис. 26.23. Влияние оптической толщины пограничного слоя на взаимодействие между радиационным и конвективным теплообменом

На рис. 26.23 представлены результаты расчетов, хорошо иллюстрирующие существенную роль оптической плотности. Радиационно-конвективное взаимодействие, несколько снижающее конвективную составляющую , имеет слабо выраженный характер.

1
Оглавление
email@scask.ru