Главная > Статистический анализ временных рядов
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

8.2.2. Моменты выборочного среднего и выборочных ковариаций

Среднее значение и дисперсия произвольной линейной комбинации

равны

где определено при доказательстве теоремы 8.2.1. Для того чтобы была несмещенной оценкой среднего должно выполняться равенство

Для данной ковариационной матрицы дисперсия величины удовлетворяющей (31), минимизируется величиной такой, что где

Это определяет среднее значение, если т. е. если характеристический вектор матрицы 2, т. е. если не зависит от (См. упр. 24 и 25 гл. 6.) Однако это выполняется не всегда.

Теорема 8.2.3. Дисперсия среднего значения у есть

Для доказательства нужно использовать следующее:

Оценка ковариации или спектральной плотности в данной точке является обычно квадратичной формой

Если и неизвестно, то матрицу выбирают так, чтобы не зависело от

Дисперсия квадратичной формы будет включать моменты четвертого порядка. Допустим, что моменты четвертого порядка существуют, т. е. Допустим также, что моменты четвертого порядка соответствуют стационарности, т. е. что

Для (34) введем обозначение Если есть гауссовский процесс, то этот момент четвертого порядка будет равен

В общем случае пусть

что является семиинвариантом четвертого порядка. [См. упр. относительно симметрии ]

Теорема 8.2.4. Среднее значение и дисперсия квадратичной формын определенной в (33), выражаются соотношениями

где

Доказательство. Искомые выражения для получаются непосредственно. Математическое ожидание равно

Заметим, что

где Два первых выражения для получаются непосредственно. Спектральное представление функции дает

так как Отсюда вытекают два последних выражения для в Пусть

(см. скан)

Это дает нам два последних выражения для Заметим, что теоремы 8.2.4 и 8.2.5 являются обобщениями лемм

Если процесс гауссовский, то семиинварианты четвертого порядка и (Они могут быть нулями и в случае негауссовского процесса.)

Вернемся теперь к моментам первого и второго порядков оценок величины Мы не будем пользоваться теоремами 8.2.4 и 8.2.5, а вычислим средние значения, дисперсии и ковариации непосредственно (поскольку каждую ковариацию можно записать одинарной суммой вместо двойной).

Если (А известно, оценка величины является несмещенной,

и, следовательно,

Смещение мало для малого и относительно велико для большого А (когда относительная выборочная вариабельность велика). Математическое ожидание величины равно

После очевидных, но весьма утомительных вычислений получаем следующие соотношения:

(см. скан)

Приведенные оценки являются смещенными, порядок смещения равен Это будет показано в § 8.3.

Математическое ожидание величины можно также выразить с помощью спектральной плотности. Из (50) имеем

Математическое ожидание величины равно

Так как то выразится формулой (51). Поэтому из (57) следует

Другие случаи рассматриваются в упр. 10.

Эти математические ожидания можно выразить также при помощи спектральной плотности, а именно

Вернемся теперь к вычислению дисперсий и ковариаций этих оценок для величин

Теорема 8.2.6.

(см. скан)

Отсюда вытекают и все последующие равенства в (60).

В частности,

(см. скан)

Если процесс гауссовский, то семиинварианты четвертого порядка в приведенных выше выражениях обращаются в нуль.

Вычисление ковариаций для выборочных ковариаций, когда имеются отклонения от выборочного среднего, более трудоемко. Рассмотрим

Тогда

(см. скан)

(См. упр. 11.) Ковариации величин могут быть найдены аналогичным образом.

1
Оглавление
email@scask.ru