Главная > Статистический анализ временных рядов
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

9.6. ОБСУЖДЕНИЕ

Пусть стационарный в широком смысле процесс имеет спектральную плотность. Тогда эта плотность, являясь преобразованием Фурье ковариационной последовательности, определяет ковариационные свойства процесса. Спектральную плотность можно связать с дисперсиями (или Энергией) синусоидальных составляющих лроцесса, имеющих случайные амплитуды и фазы. Оценка спектральной плотности по наблюдаемому временному ряду является в сущности непараметрическим методом, поскольку здесь по конечному множеству наблюдений оценивается функция на которая не определяется конечным числом параметров. Такая процедура используется обычно в тех случаях, когда исследователь не хочет связывать себя параметрической моделью определенного вида с определенным числом параметров для спектральной плотности или ковариационной последовательности, как это было сделано в гл. 5. Спектральный анализ является более гибким инструментом, чем параметрические выводы. Однако это достигается за счет уменьшения точности оценок. О нем можно говорит скорее как о методе исследования или о методе аналитического представления данных.

Для того чтобы оценивание спектра было информативным, наблюдаемый ряд должен иметь достаточную длину. Необходимая длина ряда зависит от характера спектральной плотности процесса. Спектральную плотность некоррелированной последовательности можно оценить по относительно короткому ряду наблюдений, тогда как для оценки плотности, имеющей много пиков, потребуется значительно большее число наблюдений. Фактически большое число

наблюдений необходимо и для успешного применения асимптотической теории.

Выбор константы К (или зависит как от характера оцениваемой спектральной плотности, так и от размера выборки. Чем более гладкой является спектральная плотность, тем меньшим может быть выбрано значение К (для обеспечения меньшей дисперсии). Однако, поскольку спектральная плотность является предметом оценивания, «оптимальное» значение К заранее неизвестно. Поэтому следует испытывать несколько различных значений Как видно приведенных примеров, выбор слишком малого значения К может привести к тому, что какое-то количество пиков спектральной плотности окажется незамеченным. Наоборот, выбор слишком большого К приводит к крайне нерегулярному поведению оценки.

Мы уже замечали, что если то можно представить в виде

где действительные числа. Из результатов § 7.5 вытекает тогда, что можно представить в виде полинома степени от Поэтому может иметь на не более локальных максимумов и минимумов. Если принимает и отрицательные значения, то указанный вывод уже не будет справедлив. В качестве примера такой можно привести оценку Бартлетта спектральной плотности, которой соответствует окно, принимающее и отрицательные значения.

В связи с тем, что соответствующая некоррелированным переменным плоская спектральная плотность оценивается наиболее просто, часто оказываются полезными преобразования, приводящие к упрощению спектральной плотности. Говоря более точно, поскольку всякое линейное преобразование временного ряда соответствует умножению спектральной плотности на некоторую передаточную функцию, то при соответствующей информации о характере оцениваемой спектральной плотности преобразование можно выбрать так, чтобы сделать спектральную плотность более плоской. Затем можно оценить новую спектральную плотность и, разделив полученную оценку на соответствующую передаточную функцию, получить оценку исходной спектральной плотности. Подобная процедура обсуждалась в конце § 9.4.

Следует отметить, что с вычислительной точки зрения вместо вычисления ковариаций гораздо более выгодно применять быстрое преобразование Фурье (описанное в разд. 4.3.5). Если интересуются формой спектральной плотности, то можно оценить

нормированную спектральную плотность При этом можно использовать ту же асимптотическую теорию, только следует всюду заменить на

Большинство теоретических и выборочных спектральных плотностей, а также оценок спектральных плотностей представлено в логарифмическом масштабе. Это связано с тем, что асимптотическая дисперсия логарифмов выборочных спектральных плотностей и оценок спектральных плотностей не зависит от значений самих плотностей. Однако представление этих плотностей в обычном масштабе имеет свои преимущества. Значение плотности для каждой частоты соответствует в этом случае дисперсии амплитуд вблизи этой частоты. Далее, колебания спектральной плотности в той области частот, где ее значения малы, не играют особой роли. При использовании же логарифмического масштаба эти колебания становятся преувеличенными, так что становятся заметными столь незначительные локальные максимумы, которые не были видны простым глазом в арифметическом масштабе. Если оценка спектральной плотности является арифметическим средним значений выборочной спектральной плотности то сравнение также проще производить в обычном масштабе.

В ряде примеров некоторые локальные максимумы соответствуют частотам, кратным той частоте, на которой наблюдается абсолютный максимум. Поскольку в ряд Фурье, аппроксимирующий периодическую функцию или последовательность, не являющуюся тригонометрической, входит несколько слагаемых, то упомянутые вторичные пики могут просто указывать на несинусоидальный характер основной периодической компоненты.

Во введении к этой главе уже отмечалось, что если рассматриваемая здесь оценка спектральной плотности неотрицательна, то ее можно трактовать как спектральную плотность некоторого процесса скользящего среднего. Другой метод оценивания спектральной плотности состоит в оценке коэффициентов процесса авторегрессии, аппроксимирующего процесс, из которого получена выборка. В качестве оценки спектральной плотности исходного процесса используют спектральную плотность подобранного процесса авторегрессии. Такие оценки и оценки типа скользящего среднего ведут себя асимптотически одинаково, однако эквивалентность обоих методов теоретически пока не доказана. Приведенный пример, связанный с индексом Бевериджа цен на пшеницу с выделенным трендом, говорит о том, что следует, по-видимому, предпочесть небольшие запаздывания, но использование слишком малых запаздываний может привести к неправильным выводам. Так, максимум спектральной плотности подобранного для этого случая процесса авторегрессии второго порядка не согласуется ни с одним из максимумов спектральных плотностей подобранных процессов более

высоких порядков. Однако преимуществом указанного метода является то, что получаемые коэффициенты дают возможность прогнозировать значения функции и существует разумный способ определения нужного числа запаздываний (§ 5.6).

ЛИТЕРАТУРА

(см. скан)

УПРАЖНЕНИЯ

(см. скан)

(см. скан)

(см. скан)

(см. скан)

(см. скан)

(см. скан)

(см. скан)

1
Оглавление
email@scask.ru