Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
Рассмотрим твердое тело, на которое не действуют никакие внешние силы. Согласно уравнению (44.4) его центр масс имеет постоянную скорость, а согласно (44.7) движение относительно центра масс удовлетворяет уравнению где Если на тело действуют внешние силы, которые, однако, не имеют результирующего момента относительно центра масс, то движение относительно центра масс по-прежнему выражается уравнением (55.1). Этот случай встретится, когда твердое тело движется в однородном гравитационном поле; тогда центр масс движется по параболе, но сила тяжести не влияет на движение относительно центра масс. Если твердое тело не свободно, а имеет неподвижную точку ваться, и если на тело не действуют никакие внешние силы, кроме реакции, вызванной этой связью, то, как в случае (44.5), имеем где Математические задачи, выраженные уравнениями (55.1) и (55.2), тождественны, за исключением того факта, что в уравнениях (55.1) моменты инерции берутся для центра масс, а в уравнениях (55.2) — для неподвижной точки. В дальнейшем с помощью уравнения (55.2) мы будем рассматривать задачу о вращении тела вокруг закрепленной точки Пусть ( где Согласно уравнению (25.4), кинетическая энергия имеет вид и она постоянна, так как реакция связи не совершает работы. Движение может быть очень наглядно описано методом Пуансо неподвижен в теле и движение описывается следующим образом: эллипсоид катится по неизменяемой плоскости (неподвижной в пространстве), проведенной перпендикулярно к неподвижному вектору Согласно уравнениям Эйлера (49.14) компоненты угловой скорости удовлетворяют уравнениям Уравнения (55.4) и (55.5) являются интегралами этих уравнений. Полагая тело несимметричным ( Итак, решение, выраженное через эллиптические функции Якоби модуля для В обоих случаях имеем Как только найдены эти компоненты угловой скорости, описание движения завершается введением углов Эйлера а В этих вычислениях мы воспользовались последней строкой из (11.5) и (19.4). Уравнения (55.7) имеют частные решения, в которых какая-либо одна компонента угловой скорости постоянна, а две другие обращаются в нуль. Эти решения соответствуют установившимся вращениям вокруг трех главных осей. Чтобы исследовать устойчивость этих установившихся движений, заметим, что (55.4) и (55.5) можно также выразить через компоненты Принимая ( Если осью симметрии тела является главная ось инерции, так что
|
1 |
Оглавление
|