7.8. Конечные последовательности
Существует класс двумерных последовательностей, z-преобразования которых сходятся в плоскостях
везде, за исключением, быть может, точек
или
. К этому классу относятся последовательности конечной длины, все элементы которых ограничены. Сходимость z-преобразования обеспечивается тем, что пределы суммирования в (7.32) конечны, а все слагаемые
ограничены, так что и произведения
при конечных значениях
также будут ограничены. То, что z-преобразование конечных последовательностей сходится во всех точках плоскостей
, гарантирует устойчивость двумерных фильтров с импульсной характеристикой в виде конечной последовательности.