Главная > Теория и применение цифровой обработки сигналов
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

12.13. Гомоморфная обработка речи

Термин гомоморфная обработка обычно применяют к классу систем, подчиняющихся обобщенному принципу суперпозиции, определяемому следующим образом. Если  и  — входные последовательности, а  и — соответствующие выходные последовательности системы, т. е.

                                            (12.32)

а  — произвольный скаляр, то система является гомоморфной, если справедливы   соотношения

             (12.33)

                                     (12.34)

Здесь  обозначают некоторые неконкретизированные математические операции типа умножения, сложения и  свертки.

Фиг. 12.30. Система гомоморфной обработки.

Важность рассматриваемого способа обработки определяется тем, что операция , выполняемая гомоморфной системой, может быть реализована в виде последовательности операций (фиг. 12.30). Системы  и  взаимно обратны. Система  является линейной системой с постоянными параметрами, т. е. это просто фильтр. Таким образом, используя разложение, показанное на фиг.12.30, можно обрабатывать последовательность на выходе системы  стандартными методами, т. е. сравнительно просто. Вид систем  и  легко определяется из , как это будет видно на примере анализа речи.

Как обсуждалось ранее, речевой сигнал моделируется путем свертки трех компонент: последовательности импульсов, представляющих основной тон, импульса возбуждения и импульсной характеристики голосового тракта. (В модели следует также учесть и характеристики излучения рта, но их обычно рассматривают вместе с импульсом возбуждения.) Обозначая через  последовательность импульсов основного тона, через  — импульс возбуждения, через  — импульсную характеристику голосового тракта и, наконец, через  — весовую функцию («окно») конечной длительности, служащую для выделения участков речевого сигнала, получим

.                     (12.35)

Поскольку  обычно меняется медленно, то соотношение (12.35) можно приближенно записать как

,      (12.36)

,                   (12.37)

т.е. выразить  в виде свертки трех последовательностей. Свертка легко приводится к суммированию, если воспользоваться преобразованием Фурье от (12.37) (что дает произведение) в прологарифмировать результат. Полученное колебание можно пропустить через ЛПП-систему и обработать каждую составляющую  некоторым желаемым образом. Для восстановления обработанного колебания обратная система  должна выполнить потенцирование (т.е. операцию, обратную логарифмированию) и обратное преобразование Фурье. Гомоморфная система обработки речи изображена на фиг. 12.31.

Фиг. 12.31. Система гомоморфной обработки речи (по Оппенгейму, Шаферу и Стокхэму).

Для обработки речи применительно к конкретным задачам использовалось несколько вариантов рассматриваемой системы. Один из них (фиг. 12.32) применялся, например, для оценки параметров передаточной функции голосового тракта и функции возбуждения. При этом сигналом возбуждения считалась свертка , а импульсной характеристикой голосового тракта . Таким образом,  является просто дискретной сверткой

,                             (12.38)

где  — сигнал возбуждения. Здесь  — сигнал в точке  (фиг. 12.32). Дискретное преобразование Фурье от  дает сигнал в точке , равный произведению ДПФ от  и . В следующем блоке определяется логарифм модуля полученной последовательности, причем сигнал в точке  равен сумме логарифмов модулей ДПФ от  и . Нетрудно видеть, что в последующих блоках (обратное ДПФ, взвешивание и еще одно ДПФ) выполняется линейная фильтрация сигнала в точке . По причинам, которые станут ясны ниже, фильтрация выполняется в области преобразований Фурье как мультипликативная операция. Поскольку обратное ДПФ линейно, сигнал в точке  (называемый кепстром сигнала в точке ) равен сумме кепстров функции возбуждения и импульсной характеристики  голосового тракта.

Можно показать, что кепстр в точке  позволяет разделить эффекты возбуждения и характеристики голосового тракта. Действительно, сигнал возбуждения можно рассматривать как квазипериодическую импульсную последовательность с преобразованием Фурье, близким к линейчатому, причем спектральные линии рас положены на гармониках частоты основного тона.

Фиг. 12.32. Гомоморфная обработка речи (по Оппенгейму, Шаферу и Стокхэму).

 

Фиг. 12.33. Гомоморфный анализ тоновой и шумовой речи.

Вычисление логарифма модуля не меняет линейчатого характера спектра функции возбуждения. Обратное ДПФ дает новую квазипериодическую последовательность импульсов с интервалами между импульсами, равными периоду основной частоты. Таким образом, кепстр сигнала возбуждения должен состоять из импульсов, расположенных вблизи , где — период основного тона. Импульсная характеристика голосового тракта обычно представляет собой последовательность, отличную от нуля на интервале 2030 мс. Как было показано выше, ее преобразование Фурье является медленно изменяющейся функцией частоты. После вычисления логарифма модуля и обратного ДПФ получается последовательность из небольшого числа ненулевых отсчетов, которое обычно меньше, чем число отсчетов на периоде основного тона. Можно показать, что кепстр последовательности, убывающей по закону , убывает как . Таким образом, с помощью кепстра можно отделить информацию о функции возбуждения от информации об импульсной характеристике голосового тракта.

Рассмотренный способ обработки был опробован на звонких и глухих звуках (фиг. 12.33). На верхних графиках показаны типичные колебания в точках  для тоновой речи, а на нижних — для шумовой.  Кривая на верхнем левом графике соответствует последовательности, содержащей звонкие звуки и взвешенной с помощью окна Хэмминга. Анализируемый отрезок содержал примерно три периода основного тона. Волнистая кривая на правом верхнем графике представляет логарифм модуля преобразования последовательности и состоит из быстроизменяющейся периодической компоненты (соответствующей возбуждению) и медленно изменяющейся составляющей, отражающей характеристики голосового тракта. На верхнем среднем графике приведен соответствующий кепстр. Высокий пик на 9 мс отражает период основного тона. Начальный участок представляет собой кепстр импульсной характеристики голосового тракта. Устраняя информацию о возбуждении путем умножения кепстра на весовую функцию с максимумом в начале координат в выполняя дискретное преобразование Фурье, получим плавную кривую (фиг. 12.33, справа вверху). Для определения частот основных формант, характерных для данного состояния голосового тракта, можно использовать эффективный алгоритм, основанный на анализе максимумов спектра в точке .

Колебание, возбуждающее глухие звуки, ближе к случайному процессу, чем к квазипериодической импульсной последовательности. График колебания в точке  изображен слева внизу (фиг. 12.33), где отчетливо виден случайный характер колебания. График логарифма модуля ДПФ (быстро изменяющаяся кривая) приведен справа внизу, и его также можно представить линейной комбинацией случайной компоненты, связанной с источником возбуждения, и медленно изменяющейся компоненты, характеризующей голосовой тракт. Кепстр рассматриваемого колебания приведен на среднем графике. Он не содержит высоких пиков, что указывает на глухой характер звука. Взвешивание кепстра и ДПФ дают медленно изменяющуюся кривую на правом нижнем графике. Она представляет собой частотную характеристику голосового тракта. Обычно спектр глухого звука описывают нулями и полюсами. Дальнейшее обсуждение этого вопроса содержится в разд. 12.15.

Таким образом, рассмотренная система (фиг. 12.32) позволяет разделить компоненты, образующие речевой сигнал, даже если они объединены сверткой.

 

1
Оглавление
email@scask.ru