Главная > Компактные группы Ли и их представления
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

§ 34. Теория представлений конечных групп

Всякая конечная группа, очевидно, является компактной; следовательно, вся предыдущая теория применима к этому частному случаю. (Все доказательства, лежащие в основе этой теории, можно было бы повторить применительно к этому случаю, заменяя интегралы суммами.) Однако теория конечных групп и их представлений обладает и своими индивидуальными «арифметическими» особенностями.

Прежде всего, из глобальной теоремы непосредственно вытекает

Теорема 4 («1-я теорема Бернсайда»). Если конечная группа G имеет порядок то имеет место равенство

где размерности всех неприводимых (попарно неэквивалентных) представлений группы G.

Действительно, групповая алгебра представляет собою в этом случае линейное пространство размерности и разложение

дает искомое выражение для размерности, поскольку заменяет обозначение из § 30). В действительности это разложение содержит значительно большую информацию об изоморфизме между групповой алгеброй и вполне приводимой «блок-алгеброй», состоящей из полных матричных блоков размерностей Далее следует

Теорема теорема Бернсанда»). Если число всевозможных попарно неэквивалентных неприводимых представлений группы то

где число всевозможных классов сопряженных элементов в группе конечная группа).

Для доказательства этой теоремы рассматривается центр групповой алгебры 3, который, как мы знаем, состоит из всевозможных функций, постоянных на классах сопряженных элементов, т. е. представляет собой в данном случае линейное пространство размерности х. Поскольку всякая такая функция разлагается по характерам то

где одномерное пространство натянуто на характер и мы заключаем отсюда, что Теорема доказана.

В дальнейшем мы увидим, что все такие «арифметические» закономерности сохраняются в известном смысле и для произвольной компактной группы Ли, однако при этом они приобретают «аналитическое» содержание (вместо числа элементов группы или классов сопряженных элементов рассматриваются размерности соответствующих аналитических многообразий).

Пример. Симметрическая группа Введенное обозначение мы будем использовать для группы всех подстановок, производимых над «предметами». Условимся считать, что данные предметы размещены на занумерованных местах и символ

обозначает подстановку, которая состоит в перемещении предмета с места 4 на место (движение вниз); из этого соглашения следует, что порядок расположения пар в символе для нас не имеет значения, а закон умножения в группе

напоминает закон умножения матриц (все индексы встречающиеся сверху и снизу, «сокращаются»). Известно, что всякая подстановка допускает разложение в произведение циклов

где каждый цикл определяется как частичная подстановка

которая производится над предметами, стоящими на местах Всякий внутренний автоморфизм

в группе перемещает, очевидно, номера стоящие в отдельных циклах, но не меняет длину циклов и их число. Условившись считать, что длины циклов расположены в порядке убывания;

(f - число циклов), мы можем заключить, что всякий набор таких чисел однозначно нумерует произвольный класс сопряженных элементов в группе Следовательно, число таких классов совпадает с числом всевозможных разбиений числа в сумму невозрастающих натуральных чисел. Следовательно, согласно второй теореме Бернсайда, каждое неприводимое представление группы может быть однозначно занумеровано указанным набором чисел . К более подробному рассмотрению таких представлений мы еще вернемся в § 55.

Заметим, что группа допускает точное линейное представление с помощью преобразований в линейном пространстве размерности которые определяются по правилу

в произвольном фиксированном базисе (здесь использовано одинаковое обозначение для подстановки

и соответствующего ей линейного преобразования Очевидно, при этом матрицы могут быть охарактеризованы как всевозможные матрицы, у которых в каждой строке и в каждом столбце содержится по единственному элементу, равному единице, а все остальные элементы равны нулю.

Теорема о точном линейном представлении для конечной группы доказывается тривиально, поскольку уже регулярное представление этой группы (левое или правое) является конечномерным и точным. Однако, анализируя

это представление, мы получаем в действительности более сильное утверждение:

Теорема 6. Всякая конечная группа изоморфна некоторой подгруппе в симметрической группе

Действительно, записывая элементы в виде линейных комбинаций

мы рассматриваем точки как базисные векторы в пространстве Следовательно, правые сдвиги

мы можем рассматривать как преобразование базиса в пространстве и продолжить их до линейного преобразования

во всем пространстве Поскольку точка пробегает (при фиксированном все элементы группы G точно по одному разу, то полученное линейное преобразование является оператором подстановки. Теорема доказана.

Предлагается в качестве упражнений доказать самостоятельно следующие утверждения:

1. Если все неприводимые представления конечной группы G одномерны, то группа G коммутативна. (Указание: использовать вторую теорему Бернсайда.)

2. Всякая коммутативная конечная группа изоморфна прямому произведению нескольких циклических групп (циклическая группа порядка определяется как группа корней степени из единицы).

В частности, первое из этих утверждений замечательно в том отношении, что является примером информации, даваемой системой всех неприводимых представлений группы G относительно структуры самой группы G (идея двойственности, см. § 23).

1
Оглавление
email@scask.ru