Главная > Компактные группы Ли и их представления
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

§ 92. Базис Картана — Вейля

Если выбрать базис в алгебре и корневых подпространствах то мы получим базис во всей алгебре Найдем соотношения коммутации между элементами этого базиса. Прежде всего докажем, что имеет место

Теорема 2. Пусть X — полупростая комплексная алгебра Ли. Тогда:

1° Все корневые подпространства одномерны.

2° Линейная оболочка трех векторов образует в алгебре X трехмерную подалгебру, изоморфную

3° Если нормировать векторы условием то для всякого

Доказательство. Поскольку форма Киллинга — Картана невырождена на паре то существует пара векторов для которых

Нормируем эти векторы условием и положим

Докажем, что Для этого рассмотрим произвольный элемент и заметим, что (в силу теоремы 1) Следовательно,

Поскольку корень а ненулевой, то существует вектор для которого Следовательно, Далее, в силу теоремы 1 векторы являются собственными относительно

где -значение корня а на векторе Если то согласно общей формуле, полученной в конце § 86, мы имеем для каждого корня Отсюда, как и на стр. 394, следовало бы, что В результате Полагая

получаем, как легко проверить, закон коммутации в алгебре Следовательно, алгебра изоморфна Далее, рассмотрим линейное пространство

где дополнение в к направлению вектора Подпространство Z инвариантно относительно и след оператора в этом подпространстве есть где С другой стороны, след коммутатора равен нулю, откуда В частности,

и если является корнем, то уже не являются корнями алгебры Теорема доказана.

Замечание 1. Помимо утверждений, включенных в формулировку теоремы, мы доказали еще следующее утверждение:

4° Единственными кратными корня а в алгебре X являются корни Если то

Следствие. В алгебре X существует базис из элементов и корневых векторов , где произвольный ненулевой вектор из

Полученный базис называется базисом Картана — Вейля. В нем мы можем непосредственно выписать все соотношения коммутации. Коммутатор для

которого имеет место тождество мы условимся отождествлять с корнем а и обозначим тем же символом а. Тогда имеем

Последнее равенство вытекает из общего правила коммутации между с учетом одномерности При этом, разумеется, если а не является корнем. Для окончательного описания законов коммутации достаточно найти коэффициенты Мы докажем пока только следующее утверждение:

5° Если а является корнем, то

Для доказательства достаточно заметить, что является матричным элементом трехчленной алгебры Точнее, пусть минимальное и максимальное из целых чисел для которых является корнем, и — линейная оболочка корневых векторов Тогда подпространство инвариантно относительно и вектор является собственным вектором относительно с собственным значением Заменяя, как при доказательстве теоремы 2, а на получаем цепочку собственных значений вида с Согласно теории представлений алгебры это возможно только в том случае, когда такая цепочка симметрична относительно нуля и представление в пространстве неприводимо. При этом все веса с должны встречаться без пропусков и «повышающий» оператор должен быть отличен от нуля на каждом весовом базисном векторе, за исключением старшего. Поскольку еаер мы получаем нужное утверждение.

Замечание 2. Отметим некоторые свойства симметрии коэффициентов Прежде всего за счет антисимметричности коммутатора Далее, пусть — ненулевые корни, для которых а тогда из тождества Якоби для элементов находим

С другой стороны, а корни лежат в пересечении двух плоскостей. Если эти плоскости не совпадают, то корни коллинеарны, откуда ввиду условия а и свойства 4° заключаем, что хотя бы один из корней обращается в нуль. Поскольку этот случай исключен, то

Замечание 3. Из свойства симметрии для цепочки с построенной при доказательстве утверждения 5°, заключаем, в частности, что с т. е.

Здесь минимальное и максимальное из целых чисел, для которых является корнем. Мы существенно воспользуемся этим замечанием в дальнейшем.

1
Оглавление
email@scask.ru