Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 5. Комбинаторные задачи. ОкончаниеВ этом параграфе мы рассмотрим еще несколько комбинаторных задач, при решении которых будем пользоваться установленными выше формулами и правилами. Пример 1. В некотором государстве каждые два человека отличаются набором зубов. Каково максимально возможное число жителей этого государства, если наибольшее число зубов у человека равно 32? Решение. Эту задачу можно решить двумя способами. Первый способ заключается в том, что мы сначала ищем, сколько людей может иметь
Полученный этим способом ответ оказался очень громоздким. Выгоднее избрать другой путь, которым мы уже пользовались при решении примера 5 в § 2, — применить метод индукции. Если речь идет об одном зубе, то возможны только два человека — один с зубом и второй без него. При двух зубах число возможных наборов зубов становится равным четырем: нет ни одного зуба, есть первый, есть второй и есть оба. Увеличив число зубов до трех, мы удвоим число возможностей и получим восемь различных наборов. Действительно, каждый из рассмотренных наборов двух зубов может встретиться дважды — когда нет третьего зуба и когда он есть. Обозначим число возможных наборов
Таким образом, при возможных Заметим, что полученный нами результат на самом деле дает больше, чем только оценку возможного населения забавного государства. Сравнивая полученное значение
Более того, из приведенного выше доказательства по индукции вытекает, что аналогичное равенство справедливо при любом
Пример 2. Дана прямоугольная сетка квадратов размером сходная ситуация возникает, скажем, при выборе одного из кратчайших маршрутов между двумя городскими перекрестками.) Решение. Всякая дорога представляет собой ломаную, содержащую Можно было бы рассматривать число способов выбора не Полученный результат можно использовать для вывода еще одной интересной формулы. Пусть наша сетка является квадратной, то есть имеет размеры
Рис. 46.
Рис. 47. Вместе с тем число этих дорог можно подсчитать иначе. Рассмотрим диагональ, идущую из нижнего левого угла в верхний правый, и обозначим вершины, лежащие на этой диагонали, через Найдем число возможных дорог, идущих через точку это показано на рис. 47, то точка Дорог, соединяющих верхний левый угол с точкой
Сравнивая полученную сумму с найденным выше выражением для числа дорог, мы придем к формуле:
Пример 3. Шесть пассажиров садятся на остановке в трамвайный поезд, состоящий из трех трамвайных вагонов. Каким числом различных способов могут они распределиться в вагонах? Решение. Прежде всего необходимо указать, что задача сформулирована недостаточно точно и допускает два различных толкования. Нас может интересовать или только число пассажиров в каждом вагоне или же кто именно в каком вагоне находится. Рассмотрим обе возможные формулировки. Сначала рассмотрим случай, когда учитывается, кто в каком вагоне находится, то есть когда случаи «пассажир А в первом вагоне, а пассажир В — во втором» и «пассажир В в первом вагоне, а пассажир А — во втором» считаются различными. Здесь мы имеем размещения с повторениями из трех элементов по шесть элементов: для каждого из шести пассажиров имеются три возможности. Пользуясь формулой (1) из § 4, получаем, что число различных способов, которыми шесть пассажиров могут распределиться в трех вагонах, равно:
Иной результат получится в том случае, если нас интересует лишь число пассажиров в каждом вагоне, так что случай «один пассажир в первом вагоне и один во втором» является единственным, независимо от того, кто из пассажиров где находится. Здесь нужно Но подсчитывать уже не размещения, а Сочетания с повторениями. По формуле (4) из §4 находим, что число различных способов распределения пассажиров в этом случае равно
Пример 4. Сколькими способами можно распределить 28 костей домино между 4 игроками так, чтобы каждый получил 7 костей? Решение. Первый игрок может выбрать 7 костей
способов раздела костей. Эту задачу можно решить иначе. Упорядочим все кости и отдадим первые 7 костей первому игроку, вторые 7 костей — второму игроку и т. д. Так как 28 костей можно упорядочить 28! способами, то получаем 28! способов раздела. Но некоторые из этих способов приводят к одинаковым результатам — игрокам неважно, в каком порядке приходят к ним кости, а важно лишь, какие именно кости они получат. Поэтому результат не изменится, если мы как угодно переставим друг с другом первые 7 костей, потом вторые 7 костей и т. д. Первые 7 костей можно переставить 7! способами, вторые 7 костей — тоже 7! способами и т. д. Всего получим
Пример 5. Сколькими способами можно разделить 40 яблок между 4 мальчиками (все яблоки считаются одинаковыми)? Решение. Возьмем три одинаковые перегородки и рассмотрим всевозможные перестановки 43 предметов: 40 яблок и 3 перегородок. Каждой такой перестановке соответствует свой способ раздела: первый мальчик получает все яблоки от начала до первой перегородки, второй — все яблоки между первой и второй перегородками, третий — все яблоки между второй и третьей перегородками, а четвертый — все остальные яблоки. (Если, например, первая и вторая перегородки оказались рядом, то второй мальчик ничего не получает.) Значит, число способов раздела равно числу перестановок 40 яблок и 3 перегородок. По формуле числа перестановок с повторениями получаем, что это число равно
Пример 6. Сколькими способами можно разделить 40 яблок между 4 мальчиками так, чтобы каждый получил по крайней мере 3 яблока (все яблоки по-прежнему считаются одинаковыми)? Решение. Сначала дадим каждому мальчику по 3 яблока. А потом разделим оставшиеся 28 яблок так, как было сделано в предыдущей задаче. Всего получаем
способов раздела. Пример 7. Имеется Решение. Добавим к
Если бы мы не потребовали, чтобы все флаги были использованы, то число сигналов оказалось бы больше. В этом случае задача решалась бы в два этапа. Сначала выберем, какие флаги будут участвовать в сигнале. Если число выбираемых флагов равно
Упражнения (см. скан) (см. скан)
|
1 |
Оглавление
|