ВВЕДЕНИЕ
1. Множества.
Понятие множества является одним из основных понятий математики. Оно не сводится к другим понятиям и не определяется. Вместо определения приводят лишь примеры, поясняющие его смысл. Так, можно говорить о множестве всех учеников данной школы, о множестве всех собак на земном шаре, о множестве всех клеток данного человеческого тела, о множестве всех картофелин в данном мешке, о множестве всех натуральных чисел, о множестве всех треугольников на данной плоскости, о множестве всех точек данного круга и т. д.
Когда в математике говорят о множестве, то объединяют некоторые предметы в одно целое — множество, состоящее из этих предметов. Основатель теории множеств Георг Кантор (1845—1918) выразил это следующими словами:
«Множество есть многое, мыслимое как единое».
Предметы (объекты), составляющие некоторое множество, называются его элементами. То обстоятельство, что объект а является элементом множества Л, записывается так: (словами: а есть элемент множества А; а принадлежит А; а содержится в А; А содержит а). Если объект а не является элементом множества А, то это записывается так: (словами: а не есть элемент множества А; а не принадлежит A; а не содержится в А; А не содержит а).
Например, если А есть множество всех четных натуральных чисел, то .
Множество иногда можно задать перечислением всех его элементов. В этом случае употребляют фигурные скобки, в которые помещают названия всех элементов множества, разделенные запятыми. Так, (1, 2, 3) обозначает множество, состоящее из чисел «одии», «два», «три» и только из них.
Вообще некоторое множество считается заданным, если указано некоторое свойство, которым обладают все его элементы и не обладают никакие другие объекты. Такое свойство называется характеристическим свойством множества.
Характеристическим свойством множества может быть свойство совпадать с одним из членов списка, приведенного в фигурных скобках. Другим характеристическим свойством этого же множества является свойство быть корнем уравнения