6. Метод подстановки.
Теоремы относятся по сути дела к отдельным уравнениям, а не к системе в целом. При решении систем уравнений применяются также преобразования уравнений, затрагивающие не одно уравнение, а несколько. Например, для решения системы
мы находим из первого уравнения выражение у через и подставляем это выражение во второе уравнение. Решая полученное уравнение находим корни
Так как , то оба соответствующих значения неизвестного у равны 6. Значит, решение системы можно записать в виде:
Метод, которым была решена эта система, называется методом подстановки. Он позволяет сводить решение системы уравнений с двумя неизвестными к более простой задаче — решению одного уравнения с одним неизвестным. Выясним теперь, на чем же основан метод подстановки. Для этого докажем следующую теорему. Теорема 3. Система уравнений
равносильна системе уравнений
Доказательство. Пусть — решение системы уравнений (1). Тогда . Поэтому Равенства и является решением системы уравнений (2).
Обратно, пусть — решение системы уравнений (2). Тогда имеют место равенства Из них вытекает, что является решением системы уравнений (1).
Тем самым равносильность систем уравнений (1) и (2) доказана.
Из теорем 2 и 3 вытекает
Следствие. Если уравнение равносильно уравнению то система уравнений
равносильна системе уравнений
Мы уже говорили, что теорема 3 лежит в основе метода решения систем уравнений с двумя неизвестными, называемого методом исключения неизвестных. Он состоит в следующем.
Пусть задана система уравнений
Выразим из первого уравнения системы у через х, то есть заменим уравнение равносильным ему уравнением Полученное выражение для у подставим во второе уравнение, то есть заменим систему уравнений (1) равносильной ей системой
Уравнение является уже уравнением с одним неизвестным. Решая его, получим корни . Им соответствуют значения неизвестного у. В соответствии с этим получаем решения
заданной системы.
Часто приходится заменять уравнение не одним уравнением вида , а совокупностью
таких уравнений. Тогда и система (1) заменяется совокупностью систем
Из каждой системы этой совокупности получаем описанным выше методом решения заданной системы, после чего объединяем их. Примеры
1. Решить систему уравнений:
Из первого уравнения системы находим . Подставляя это значение во второе уравнение, получаем:
или, после упрощения,
Корнями этого биквадратного уравнения являются числа:
Им соответствуют значения:
Значит, решения заданной системы уравнений имеют вид:
2. Решить систему уравнений:
Из первого уравнения системы получаем:
Значит, нам надо решить совокупность двух систем уравнений:
Делая в первой системе подстановку, получаем:
или Решая (возведением в квадрат) это иррациональное уравнение, находим корни . Им соответствуют значения . Итак, первая система имеет решения:
Точно так же доказывается, что вторая система имеет решения:
Следовательно, заданная система имеет решения: