Главная > Математический анализ. (Виленкин)
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

7. Сопряженные комплексные числа.

Определение. Два комплексных числа, имеющие одну и ту же действительную часть и взаимно противоположные коэффициенты мнимых частей, называются взаимно) сопряженными.

Для любого комплексного числа z существует одно и только одно сопряженное с ним комплексное число, которое обозначается . Если , то . Очевидно, тогда и только тогда, когда z — действительное число.

Отметим, что сумма и произведение двух сопряженных комплексных чисел являются действительными числами:

Ранее было выведено правило деления комплексных чисел. Это правило можно проще получить с помощью сопряженных комплексных чисел.

Умножим числитель и знаменатель дроби — на число комплексно сопряженное со знаменателем. Выполнив действия и отделив действительную часть от мнимой, получаем:

Этот результат совпадает с формулой, полученной в п. 6.

Эту формулу можно не запоминать, а только помнить, что при делении надо числитель и знаменатель дроби умножить на число, комплексно сопряженное со знаменателем.

Теорема 1. Число, сопряженное с суммой или произведением комплексных чисел, есть сумма или соответственно произведение чисел, сопряженных данным комплексным числам:

Доказательство. Пусть . Тогда . Имеем:

Точно так же

Эта теорема показывает, что, поставив в соответствие каждому комплексному числу сопряженное с ним число, мы получили взаимно однозначное отображение поля комплексных чисел К на это же поле при котором сохраняются операции сложения и умножения.

Из теоремы 1 непосредственно вытекает следующее

Следствие 1. Число, сопряженное (натуральной) степени комплексного числа, равно той же степени числа, сопряженного данному:

Далее, если нам дан многочлен

коэффициенты которого — комплексные числа, то, заменив каждый коэффициент сопряженным ему комплексным числом мы получим новый многочлен, который обозначим через

Если теперь в полученном многочлене произвольное значение переменной заменить сопряженным ему значением то в силу доказанной выше теоремы и следствия I полученное значение многочлена будет комплексным числом, сопряженным с исходным значением многочлена

Если, в частности, все коэффициенты многочлена действительные числа, то один и тот же многочлен, и формула (3) дает:

Таким образом, мы получили

Следствие 2. При замене в многочлене с действительными коэффициентами произвольного значения аргумента сопряженным ему числом значение многочлена также заменяется сопряженным ему числом.

Упражнения

(см. скан)

Categories

1
Оглавление
email@scask.ru