Главная > Спиноры и пространство-время, Т.1
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

Регулярность в точке О

Мы не будем касаться более сложных вопросов, связанных, скажем, с отказом от требования аналитичности или с заменой светового конуса характеристической (т. е. изотропной) гиперповерхностью более общего вида. Можно было бы, например, ожидать, что заданием изотропных начальных значений на верхней половине светового конуса будут определяться поля внутри (по крайней мере не слишком далеко от точки О). Но для ответа на эти вопросы изложенных методов недостаточно. В § 12 будут получены некоторые формулы, используя которые, можно попытаться прояснить подобные технические проблемы для определенных типов полей. Здесь же мы коснемся единственной довольно общей проблемы такого рода — о поведении изотропных данных в вершине О светового конуса Поскольку О — сингулярная точка на остается неясным, какого рода условиям гладкости должны удовлетворять функции, описывающие изотропные начальные данные в этой точке.

В данной связи нужно учитывать характер зависимости от в несингулярной точке светового конуса При преобразовании

имеем

т. е. в терминологии гл. 4, § 13 величина представляет собой скаляр типа если выбирается спиновая система отсчета в каждой точке конуса такая, что

(В каждой точке X светового конуса спинор определен, разумеется, с точностью до коэффициента пропорциональности, так как он соответствует касательной к образующей конуса проходящей через точку X.) Напомним, что целое или полуцелое число

есть спиновый вес величины

Рассмотрим теперь -скаляр заданный на конусе но вне связи с полным пространством-временем . В качестве определения аналитичности функции можно принять существование разложения вида

сходящегося в некоторой окрестности точки О в случае изотропного вектора заданного в точке О, где — постоянные, определенные в точке О. Мы имеем спиноров и спиноров что приводит к величине являющейся, как и требуется, скаляром типа Ясно, что функция заданная формулами (5.11.10) и (5.11.11), будет в этом смысле аналитичной. [Поскольку — скаляр, указание пути в формуле (5.11.17) существенно лишь в случае заряженных полей. Но можно и в этом случае не считаться с ним, если выбрать электромагнитный потенциал в виде аналитической функции, опять-таки в смысле равенства (5.11.17).]

Рассмотрим характер регулярности функции в вершине О, определяемый разложением (5.11.17). Для этого будем считать касательное пространство в точке О пространством Минковского М из гл. 4, § 15, а вершину О — точкой Полагая, как в формуле (5.11.15), так что находим, что

член в сумме (5.11.17) будет иметь вид (4.15.41). Из того, что говорилось в связи с формулами (4.15.43) — (4.15.57), следует, что (по отношению к произвольно выбранной временной оси в точке О) член (коэффициент при есть линейная хомбинация сферических гармоник со спиновым весом причем

Посмотрим, что это означает в случае Тогда в степенном разложении функции коэффициент при будет содержать обычные сферические гармоники только порядков Это можно сопоставить с поведением аналитической функции переменных в обычном евклидовом 3-пространстве, представленной в сферических координатах В этом случае коэффициент при будет содержать сферические гармоники лишь порядка нечетно) или четно). Можно сказать, что аналитическая -функция на несет вдвое больше информации, чем обычная аналитическая скалярная функция в евклидовом 3-пространстве. Это можно понимать как одно из «объяснений» уменьшения в 2 раза числа функций, задающих начальные условия на изотропной гиперповерхности по сравнению с начальными условиями, которые нужно задать на пространственноподобной гиперповерхности, поскольку каждая функция на «стоит двух». Это, однако, еще далеко от полного объяснения.

Небезынтересно отметить любопытное свойство нулей функции на в случае . В типичном случае будем иметь линий таких нулей, входящих в вершину О, причем

Отчасти это вытекает из топологических рассуждений, а отчасти из анализа, который будет дан в гл. 8, § 8.

1
Оглавление
email@scask.ru