Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 100. Разрывы в начальных условияхОдной из важнейших причин возникновения поверхностей разрыва в газе могут являться разрывы в начальных условиях движения. Начальные условия (т. е. начальные распределения скорости, давления и т. п.) могут быть заданы, вообще говоря, произвольным образом. В частности, эти начальные распределения отнюдь не должны быть непременно везде непрерывными функциями и могут испытывать разрывы на некоторых поверхностях. Так, если в некоторый момент времени привести в соприкосновение две массы газа, сжатые до различных давлений, то поверхность их соприкосновения будет поверхностью разрыва в начальном распределении давления. Существенно, что скачки различных величин в разрывах начальных условий (или, как мы будем говорить, в начальных разрывах) могут быть совершенно произвольными; между ними не должно существовать никаких соотношений. Между тем, мы знаем, что на поверхности разрывов, которые могут существовать в газе в качестве устойчивых образований, должны соблюдаться определенные условия; так, скачки плотности и давления в ударной волне связаны друг с другом ударной адиабатой. Поэтому ясно, что если в начальном разрыве эти необходимые условия не соблюдаются, то в дальнейшем он во всяком случае не сможет продолжать существовать как таковой. Вместо этого начальный разрыв, вообще говоря, распадается на несколько разрывов, каждый из которых является каким-нибудь из возможных типов разрывов (ударная волна, тангенциальный разрыв, слабый разрыв); с течением времени эти возникшие разрывы будут отходить друг от друга. В течение малого промежутка времени, начиная от начального момента t = 0, разрывы, на которые распадается начальный разрыв, еще не успеют разойтись на большие расстояния друг от друга, и потому вся исследуемая картина движения будет ограничена сравнительно узким объемом, прилегающим к поверхности начального разрыва. Как обычно, достаточно рассматривать в общем случае отдельные участки поверхности начального разрыва, каждый из которых можно считать плоским. Поэтому можно ограничиться рассмотрением плоской поверхности разрыва. Мы выберем эту плоскость в качестве плоскости у, z. Из соображений симметрии очевидно, что разрывы, на которые распадется начальный разрыв при Благодаря отсутствию каких бы то ни было характеристических параметров длины и времени, задача автомодельна, и мы можем воспользоваться полученными в предыдущем параграфе результатами. Разрывы, возникающие при распаде начального разрыва, должны, очевидно, двигаться от места их образования, т. е. от места нахождения начального разрыва. Легко видеть, что при этом в каждую из двух сторон (в положительном и отрицательном направлениях оси Наряду с ударными волнами и волнами разрежения при распаде начального разрыва должен, вообще говоря, возникнуть так же и тангенциальный разрыв. Такой разрыв во всяком случае необходим, если в начальном разрыве испытывали скачок поперечные компоненты скорости Тангенциальный разрыв, однако, должен возникнуть даже и в том случае, когда Состояние газа определяется тремя независимыми величинами, например,
Рис. 78 С другой стороны, мы видели, что в результате распада в каждую сторону может пойти не более одной волны — ударной или разрежения. Таким образом, мы будем иметь в нашем распоряжении всего два параметра, что недостаточно. Возникающий на месте начального разрыва тангенциальный разрыв как раз и представляет этот недостающий третий параметр. На этом разрыве остается непрерывным давление; плотность же (а с ней и температура, энтропия) испытывает скачок. Тангенциальный разрыв неподвижен относительного газа по обеим его сторонам, и потому к нему не относятся использованные выше соображения о взаимном обгоне двух распространяющихся в одном направлении волн. Газы, находящиеся по обе стороны тангенциального разрыва, не перемешиваются друг с другом, так как движения газа через тангенциальный разрыв нет; во всех перечисленных ниже вариантах эти газы могут быть даже газами различных веществ. На рис. 78 схематически изображены все возможные типы распада начального разрыва. Сплошной линией изображен ход изменения давления вдоль оси х (изменение плотности изобразилось бы линией такого же характера, с той лишь разницей, что имелся бы скачок также и на тангенциальном разрыве). Вертикальные отрезки изображают образовавшиеся разрывы, а стрелками указаны направления их распространения и направления движения газа. Система координат выбрана везде та, в которой тангенциальный разрыв покоится; вместе с ним покоится также и газ в прилегающих к нему областях 3, 3. Давления, плотности и скорости газов в крайних слева и справа областях 1 и 2 — это те значения соответствующих величин, которые они имеют в момент времени В первом случае (который мы условно записываем в виде В случае Далее, в третьем случае Выведем аналитические условия, определяющие характер распада начального разрыва в зависимости от его параметров. Будем считать во всех случаях, что Имея в виду, что газы по обеим сторонам начального разрыва могут быть газами различных веществ, будем различать их, называя соответственно газами 1 и 2. 1. Распад Поскольку газы в областях
Наименьшее значение, которое может иметь давление
где посредством V обозначен объем, являющийся абсциссой точки с ординатой
Отметим, что условия (100,1-2), устанавливающие границу возможных значений разности скоростей 2. Распад
а полное изменение скорости в волне разрежения 4 равно согласно (99,7)
При заданных
Здесь V имеет тот же смысл, что и в предыдущем случае; выражение, определяющее верхний предел разности
где 3. Распад
Интеграл в правой стороне неравенства вычисляется для газа 2, а в левой стороне первый интеграл — для газа 1, а второй — для газа 2. Для политропного газа получим:
где
то между волнами разрежения возникает область вакуума (распад К задаче о разрыве в начальных условиях сводятся, в частности, задачи о различных столкновениях плоских поверхностей разрывов. В момент столкновения обе плоскости совпадают и представляют собой некоторый «начальный разрыв», в дальнейшем распадающийся одним из описанных выше способов. Так, в результате столкновения двух ударных волн снова возникают две ударные же волны, расходящиеся от остающегося между ними тангенциального разрыва:
Когда одна ударная волна догоняет другую, возможны два случая:
В обоих случаях вперед продолжает распространяться ударная же волна. К этой же категории относится задача об отражении и прохождении ударной волны через тангенциальный разрыв (границу двух сред). Здесь возможны два случая:
Прошедшая во вторую среду волна всегда является ударной (см. также задачи к этому параграфу).
|
1 |
Оглавление
|