Главная > Теоретическая физика. Т. VI. Гидродинамика
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

§ 100. Разрывы в начальных условиях

Одной из важнейших причин возникновения поверхностей разрыва в газе могут являться разрывы в начальных условиях движения. Начальные условия (т. е. начальные распределения скорости, давления и т. п.) могут быть заданы, вообще говоря, произвольным образом. В частности, эти начальные распределения отнюдь не должны быть непременно везде непрерывными функциями и могут испытывать разрывы на некоторых поверхностях. Так, если в некоторый момент времени привести в соприкосновение две массы газа, сжатые до различных давлений, то поверхность их соприкосновения будет поверхностью разрыва в начальном распределении давления.

Существенно, что скачки различных величин в разрывах начальных условий (или, как мы будем говорить, в начальных разрывах) могут быть совершенно произвольными; между ними не должно существовать никаких соотношений. Между тем, мы знаем, что на поверхности разрывов, которые могут существовать в газе в качестве устойчивых образований, должны соблюдаться определенные условия; так, скачки плотности и давления в ударной волне связаны друг с другом ударной адиабатой. Поэтому ясно, что если в начальном разрыве эти необходимые условия не соблюдаются, то в дальнейшем он во всяком случае не сможет продолжать существовать как таковой. Вместо этого начальный разрыв, вообще говоря, распадается на несколько разрывов, каждый из которых является каким-нибудь из возможных типов разрывов (ударная волна, тангенциальный разрыв, слабый разрыв); с течением времени эти возникшие разрывы будут отходить друг от друга.

В течение малого промежутка времени, начиная от начального момента t = 0, разрывы, на которые распадается начальный разрыв, еще не успеют разойтись на большие расстояния друг от друга, и потому вся исследуемая картина движения будет ограничена сравнительно узким объемом, прилегающим к поверхности начального разрыва. Как обычно, достаточно рассматривать в общем случае отдельные участки поверхности начального разрыва, каждый из которых можно считать плоским. Поэтому можно ограничиться рассмотрением плоской поверхности разрыва. Мы выберем эту плоскость в качестве плоскости у, z. Из соображений симметрии очевидно, что разрывы, на которые распадется начальный разрыв при будут тоже плоскими и перпендикулярными к оси Вся картина движения будет зависеть только от одной координаты (и времени), так что задача сводится к одномерной.

Благодаря отсутствию каких бы то ни было характеристических параметров длины и времени, задача автомодельна, и мы можем воспользоваться полученными в предыдущем параграфе результатами.

Разрывы, возникающие при распаде начального разрыва, должны, очевидно, двигаться от места их образования, т. е. от места нахождения начального разрыва. Легко видеть, что при этом в каждую из двух сторон (в положительном и отрицательном направлениях оси ) может двигаться либо одна ударная волна, либо одна пара слабых разрывов, ограничивающих волну разрежения. Действительно, если бы, скажем, в положительном направлении оси распространялись две образовавшиеся в одном и том же месте в момент ударные волны, то передняя из них должна была бы двигаться со скоростью большей, чем скорость задней волны. Между тем согласно общим свойствам ударных волн первая должна двигаться относительно остающегося за ней газа со скоростью, меньшей скорости звука с в этом газе, а вторая должна двигаться относительно того же газа со скоростью, превышающей ту же величину с (в области между двумя ударными волнами ), т. е. должна догонять первую. По такой же причине не могут следовать друг за другом в одну и ту же сторону ударная волна и волна разрежения (достаточно заметить, что слабые разрывы движутся относительно газов впереди и позади них со звуковой скоростью). Наконец, две одновременно возникшие волны разрежения не могут разойтись, так как скорость заднего фронта первой равна скорости заднего фронта второй.

Наряду с ударными волнами и волнами разрежения при распаде начального разрыва должен, вообще говоря, возникнуть так же и тангенциальный разрыв. Такой разрыв во всяком случае необходим, если в начальном разрыве испытывали скачок поперечные компоненты скорости Поскольку эти компоненты скорости не меняются ни в ударной волне, ни в волне разрежения, то их скачок будет всегда происходить на тангенциальном разрыве, остающемся на том же месте, где находился начальный разрыв; с каждой стороны от этого разрыва будут оставаться постоянными (в действительности, конечно, благодаря неустойчивости тангенциального разрыва со скачком скорости он, как всегда, с течением времени размоется в турбулентную область).

Тангенциальный разрыв, однако, должен возникнуть даже и в том случае, когда не имеют скачка в начальном разрыве (не ограничивая общности, можно считать в этом случае, что постоянные равны нулю, что и будет подразумеваться ниже). Это показывают следующие соображения. Возникающие в результате распада разрывы должны дать возможность перейти от заданного состояния 1 газа с одной стороны начального разрыва к заданному состоянию 2 с другой стороны.

Состояние газа определяется тремя независимыми величинами, например, Поэтому необходимо иметь в распоряжении три произвольных параметра для того, чтобы посредством некоторого набора разрывов перейти, скажем, от состояния 1 к произвольно заданному состоянию 2. Но мы знаем, что ударная волна (перпендикулярная к направлению потока), распространяющаяся по газу, термодинамическое состояние которого задано, полностью определяется одним параметром (§ 85). То же самое относится к волне разрежения (как видно из формул (99,14-16), при заданном состоянии входящего в волну разрежения газа состояние выходящего газа полностью определится заданием одной из величин в нем).

Рис. 78

С другой стороны, мы видели, что в результате распада в каждую сторону может пойти не более одной волны — ударной или разрежения.

Таким образом, мы будем иметь в нашем распоряжении всего два параметра, что недостаточно.

Возникающий на месте начального разрыва тангенциальный разрыв как раз и представляет этот недостающий третий параметр. На этом разрыве остается непрерывным давление; плотность же (а с ней и температура, энтропия) испытывает скачок. Тангенциальный разрыв неподвижен относительного газа по обеим его сторонам, и потому к нему не относятся использованные выше соображения о взаимном обгоне двух распространяющихся в одном направлении волн.

Газы, находящиеся по обе стороны тангенциального разрыва, не перемешиваются друг с другом, так как движения газа через тангенциальный разрыв нет; во всех перечисленных ниже вариантах эти газы могут быть даже газами различных веществ.

На рис. 78 схематически изображены все возможные типы распада начального разрыва. Сплошной линией изображен ход изменения давления вдоль оси х (изменение плотности изобразилось бы линией такого же характера, с той лишь разницей, что имелся бы скачок также и на тангенциальном разрыве).

Вертикальные отрезки изображают образовавшиеся разрывы, а стрелками указаны направления их распространения и направления движения газа. Система координат выбрана везде та, в которой тангенциальный разрыв покоится; вместе с ним покоится также и газ в прилегающих к нему областях 3, 3. Давления, плотности и скорости газов в крайних слева и справа областях 1 и 2 — это те значения соответствующих величин, которые они имеют в момент времени на обеих сторонах начального разрыва.

В первом случае (который мы условно записываем в виде рис. 78, а) из начального разрыва Н возникают две ударные волны У, распространяющиеся в противоположные стороны, и расположенный между ними тангенциальный разрыв Т. Этот случай осуществляется при столкновении двух масс газа, движущихся с большой скоростью навстречу друг другу.

В случае (рис. 78, б) по одну сторону от тангенциального разрыва распространяется ударная волна, а по другую — волна разрежения Р. Этот случай осуществляется, например, если в начальный момент времени приводятся в соприкосновение две неподвижные друг относительно друга массы газа сжатые до различных давлений. Действительно, из всех четырех случаев, изображенных на рис. 78, только во втором из них газы 1 и 2 движутся в одинаковом направлении и потому может быть

Далее, в третьем случае в обе стороны от тангенциального разрыва распространяются по волне разрежения. Если газы 1 и 2 разлетаются друг от друга с достаточно большой скоростью то в волнах разрежения давление может достичь при своем падении значения нуль. Тогда возникает картина, изображенная на рис. 78, г; между областями 4 и 4 образуется область вакуума 3.

Выведем аналитические условия, определяющие характер распада начального разрыва в зависимости от его параметров. Будем считать во всех случаях, что а положительное направление оси выбираем везде в направлении от области 1 к области 2 (в соответствии с рис. 78).

Имея в виду, что газы по обеим сторонам начального разрыва могут быть газами различных веществ, будем различать их, называя соответственно газами 1 и 2.

1. Распад Если — давление, скорость и удельные объемы в образовавшихся после распада областях 3 и 3, то имеем , а объемы определяются как абсциссы точек с ординатами на ударных адиабатах, проведенных соответственно через точки в качестве исходных.

Поскольку газы в областях в выбранной системе координат неподвижны, то согласно формуле (85,7) можно написать для скоростей направленных соответственно в положительном и отрицательном направлениях оси х:

Наименьшее значение, которое может иметь давление при заданных так, чтобы не противоречить исходному предположению есть Имея также в виду, что разность есть монотонно возрастающая функция находим искомое неравенство

(100,1)

где посредством V обозначен объем, являющийся абсциссой точки с ординатой на ударной адиабате газа 1, проведенной через точку в качестве начальной. Вычислив V по формуле (89,1) (написав в ней V вместо ), получим для политропного газа условие (100,1) в виде

Отметим, что условия (100,1-2), устанавливающие границу возможных значений разности скоростей не зависят, очевидно, от выбора системы координат.

2. Распад Здесь Для скорости газа в области 1 имеем опять:

а полное изменение скорости в волне разрежения 4 равно согласно (99,7)

При заданных значения могут лежать в пределах от до . Заменяя в разности — один раз на , а другой — на получим условие

(100,3)

Здесь V имеет тот же смысл, что и в предыдущем случае; выражение, определяющее верхний предел разности должно вычисляться для газа 1, а нижний предел — для газа 2. Для политропного газа получим:

где скорость звука в газе 2 в состоянии .

3. Распад Здесь Тем же путем найдем следующее условие осуществления этого случая:

(100,5)

Интеграл в правой стороне неравенства вычисляется для газа 2, а в левой стороне первый интеграл — для газа 1, а второй — для газа 2. Для политропного газа получим:

(100,6)

где

то между волнами разрежения возникает область вакуума (распад ).

К задаче о разрыве в начальных условиях сводятся, в частности, задачи о различных столкновениях плоских поверхностей разрывов. В момент столкновения обе плоскости совпадают и представляют собой некоторый «начальный разрыв», в дальнейшем распадающийся одним из описанных выше способов. Так, в результате столкновения двух ударных волн снова возникают две ударные же волны, расходящиеся от остающегося между ними тангенциального разрыва:

Когда одна ударная волна догоняет другую, возможны два случая:

В обоих случаях вперед продолжает распространяться ударная же волна.

К этой же категории относится задача об отражении и прохождении ударной волны через тангенциальный разрыв (границу двух сред). Здесь возможны два случая:

Прошедшая во вторую среду волна всегда является ударной (см. также задачи к этому параграфу).

1
Оглавление
email@scask.ru