Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 100. Разрывы в начальных условияхОдной из важнейших причин возникновения поверхностей разрыва в газе могут являться разрывы в начальных условиях движения. Начальные условия (т. е. начальные распределения скорости, давления и т. п.) могут быть заданы, вообще говоря, произвольным образом. В частности, эти начальные распределения отнюдь не должны быть непременно везде непрерывными функциями и могут испытывать разрывы на некоторых поверхностях. Так, если в некоторый момент времени привести в соприкосновение две массы газа, сжатые до различных давлений, то поверхность их соприкосновения будет поверхностью разрыва в начальном распределении давления. Существенно, что скачки различных величин в разрывах начальных условий (или, как мы будем говорить, в начальных разрывах) могут быть совершенно произвольными; между ними не должно существовать никаких соотношений. Между тем, мы знаем, что на поверхности разрывов, которые могут существовать в газе в качестве устойчивых образований, должны соблюдаться определенные условия; так, скачки плотности и давления в ударной волне связаны друг с другом ударной адиабатой. Поэтому ясно, что если в начальном разрыве эти необходимые условия не соблюдаются, то в дальнейшем он во всяком случае не сможет продолжать существовать как таковой. Вместо этого начальный разрыв, вообще говоря, распадается на несколько разрывов, каждый из которых является каким-нибудь из возможных типов разрывов (ударная волна, тангенциальный разрыв, слабый разрыв); с течением времени эти возникшие разрывы будут отходить друг от друга. В течение малого промежутка времени, начиная от начального момента t = 0, разрывы, на которые распадается начальный разрыв, еще не успеют разойтись на большие расстояния друг от друга, и потому вся исследуемая картина движения будет ограничена сравнительно узким объемом, прилегающим к поверхности начального разрыва. Как обычно, достаточно рассматривать в общем случае отдельные участки поверхности начального разрыва, каждый из которых можно считать плоским. Поэтому можно ограничиться рассмотрением плоской поверхности разрыва. Мы выберем эту плоскость в качестве плоскости у, z. Из соображений симметрии очевидно, что разрывы, на которые распадется начальный разрыв при Благодаря отсутствию каких бы то ни было характеристических параметров длины и времени, задача автомодельна, и мы можем воспользоваться полученными в предыдущем параграфе результатами. Разрывы, возникающие при распаде начального разрыва, должны, очевидно, двигаться от места их образования, т. е. от места нахождения начального разрыва. Легко видеть, что при этом в каждую из двух сторон (в положительном и отрицательном направлениях оси Наряду с ударными волнами и волнами разрежения при распаде начального разрыва должен, вообще говоря, возникнуть так же и тангенциальный разрыв. Такой разрыв во всяком случае необходим, если в начальном разрыве испытывали скачок поперечные компоненты скорости Тангенциальный разрыв, однако, должен возникнуть даже и в том случае, когда Состояние газа определяется тремя независимыми величинами, например,
Рис. 78 С другой стороны, мы видели, что в результате распада в каждую сторону может пойти не более одной волны — ударной или разрежения. Таким образом, мы будем иметь в нашем распоряжении всего два параметра, что недостаточно. Возникающий на месте начального разрыва тангенциальный разрыв как раз и представляет этот недостающий третий параметр. На этом разрыве остается непрерывным давление; плотность же (а с ней и температура, энтропия) испытывает скачок. Тангенциальный разрыв неподвижен относительного газа по обеим его сторонам, и потому к нему не относятся использованные выше соображения о взаимном обгоне двух распространяющихся в одном направлении волн. Газы, находящиеся по обе стороны тангенциального разрыва, не перемешиваются друг с другом, так как движения газа через тангенциальный разрыв нет; во всех перечисленных ниже вариантах эти газы могут быть даже газами различных веществ. На рис. 78 схематически изображены все возможные типы распада начального разрыва. Сплошной линией изображен ход изменения давления вдоль оси х (изменение плотности изобразилось бы линией такого же характера, с той лишь разницей, что имелся бы скачок также и на тангенциальном разрыве). Вертикальные отрезки изображают образовавшиеся разрывы, а стрелками указаны направления их распространения и направления движения газа. Система координат выбрана везде та, в которой тангенциальный разрыв покоится; вместе с ним покоится также и газ в прилегающих к нему областях 3, 3. Давления, плотности и скорости газов в крайних слева и справа областях 1 и 2 — это те значения соответствующих величин, которые они имеют в момент времени В первом случае (который мы условно записываем в виде В случае Далее, в третьем случае Выведем аналитические условия, определяющие характер распада начального разрыва в зависимости от его параметров. Будем считать во всех случаях, что Имея в виду, что газы по обеим сторонам начального разрыва могут быть газами различных веществ, будем различать их, называя соответственно газами 1 и 2. 1. Распад Поскольку газы в областях
Наименьшее значение, которое может иметь давление
где посредством V обозначен объем, являющийся абсциссой точки с ординатой
Отметим, что условия (100,1-2), устанавливающие границу возможных значений разности скоростей 2. Распад
а полное изменение скорости в волне разрежения 4 равно согласно (99,7)
При заданных
Здесь V имеет тот же смысл, что и в предыдущем случае; выражение, определяющее верхний предел разности
где 3. Распад
Интеграл в правой стороне неравенства вычисляется для газа 2, а в левой стороне первый интеграл — для газа 1, а второй — для газа 2. Для политропного газа получим:
где
то между волнами разрежения возникает область вакуума (распад К задаче о разрыве в начальных условиях сводятся, в частности, задачи о различных столкновениях плоских поверхностей разрывов. В момент столкновения обе плоскости совпадают и представляют собой некоторый «начальный разрыв», в дальнейшем распадающийся одним из описанных выше способов. Так, в результате столкновения двух ударных волн снова возникают две ударные же волны, расходящиеся от остающегося между ними тангенциального разрыва:
Когда одна ударная волна догоняет другую, возможны два случая:
В обоих случаях вперед продолжает распространяться ударная же волна. К этой же категории относится задача об отражении и прохождении ударной волны через тангенциальный разрыв (границу двух сред). Здесь возможны два случая:
Прошедшая во вторую среду волна всегда является ударной (см. также задачи к этому параграфу).
|
1 |
Оглавление
|