Главная > Теоретическая физика. Т. VI. Гидродинамика
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

ГЛАВА VI. ДИФФУЗИЯ

§ 58. Уравнения гидродинамики для жидкой смеси

Во всем предыдущем изложении предполагалось, что жидкость полностью однородна по своему составу. Если же мы имеем дело со смесью жидкостей или газов, состав которой меняется вдоль ее объема, то уравнения гидродинамики существенно изменяются.

Мы ограничимся рассмотрением смесей с двумя только компонентами. Состав смеси мы будем описывать концентрацией с, определяемой как отношение массы одного из входящих в состав смеси веществ к полной массе жидкости в данном элементе объема.

С течением времени распределение концентрации в жидкости, вообще говоря, меняется. Изменение концентрации происходит двумя путями. Во-первых, при макроскопическом движении жидкости каждый данный ее участок передвигается как целое с неизменным составом. Этим путем осуществляется чисто механическое перемешивание жидкости; хотя состав каждого передвигающегося участка жидкости не меняется, но в каждой данной неподвижной точке пространства концентрация находящейся в этом месте жидкости будет со временем меняться. Если отвлечься от могущих одновременно иметь место процессов теплопроводности и внутреннего трения, то такое изменение концентрации является термодинамически обратимым процессом и не ведет к диссипации энергии.

Во-вторых, изменение состава может происходить путем молекулярного переноса веществ смеси из одного участка жидкости в другой. Выравнивание концентрации путем такого непосредственного изменения состава каждого из участков жидкости называют диффузией. Диффузия является процессом необратимым и представляет собой наряду с теплопроводностью и вязкостью один из источников диссипации энергии в жидкой смеси.

Будем обозначать посредством полную плотность жидкости. Уравнение непрерывности для полной массы жидкости сохраняет прежний вид

Оно означает, что полная масса жидкости в некотором объеме может измениться только путем втекания или вытекания жидкости из этого объема.

Следует подчеркнуть, что, строго говоря, для жидкой смеси самое понятие скорости должно быть определено заново. Написав уравнение непрерывности в виде (58,1), мы тем самым определили скорость в соответствии с прежним определением как полный импульс единицы массы жидкости.

Не меняется также и уравнение Навье-Стокса (15,5). Выведем теперь остальные гидродинамические уравнения для смесей.

При отсутствии диффузии состав каждого данного элемента жидкости оставался бы неизменным при его передвижении. Это значит, что полная производная была бы равна нулю, т. е. имело бы место уравнение

Это уравнение можно написать, используя (58,1), как

т. е. в виде уравнения непрерывности для одного из веществ в смеси есть масса одного из веществ смеси в единице объема). Написанное в интегральном виде

оно означает, что изменение количества данного вещества в некотором объеме равно количеству этого вещества, переносимому движущейся жидкостью через поверхность объема.

При наличии диффузии наряду с потоком данного вещества вместе со всей жидкостью имеется еще и другой поток, который приводит к переносу веществ в смеси даже при отсутствии движения жидкости в целом. Пусть i есть плотность этого диффузионного потока, т. е. количество рассматриваемого вещества, переносимого путем диффузии в единицу времени через единицу поверхности. Тогда для изменения количества этого вещества в некотором объеме имеем:

или в дифференциальном виде

С помощью (58,1) это уравнение непрерывности для одного из веществ в смеси можно написать в виде

Для вывода еще одного уравнения повторим произведенный в § 49 вывод, учитывая, что термодинамические величины жидкости являются теперь функциями также и от концентрации. При вычислении (в § 49) производной

с помощью уравнений движения нам приходилось, в частности, преобразовывать члены Это преобразование теперь изменяется в связи с тем, что термодинамические соотношения для энергии и тепловой функции содержат дополнительный член с дифференциалом концентрации:

где — соответствующим образом определенный химический потенциал смеси Соответственно этому в производнуюр войдет теперь дополнительный член Написав второе из термодинамических соотношений в виде

мы видим, что в член — войдет дополнительный член . Таким образом, к выражению (49,3) надо прибавить

Поэтому к выражению (49,3) надо добавить

В результате получим:

Вместо — мы пишем теперь некоторый поток тепла q, который может зависеть не только от градиента температуры, но и от градиента концентрации (см. следующий параграф). Сумму двух последних членов с правой стороны равенства напишем в виде

Выражение

стоящее под знаком в (58,4), есть, по определению q, полный поток энергии в жидкости. Первый член есть обратимый поток энергии, связанный просто с перемещением жидкости как целого, а сумма есть необратимый поток. При отсутствии макроскопического движения вязкий поток исчезает и тепловой поток есть просто

Уравнение закона сохранения энергии гласит:

Вычитая его почленно из (58,4), получим искомое уравнение

обобщающее выведенное ранее уравнение (49,4).

Мы получили, таким образом, полную систему гидродинамических уравнений для жидких смесей. Число уравнений в этой системе на единицу больше, чем в случае чистой жидкости, соответственно тому, что имеется еще одна неизвестная функция концентрация. Этими уравнениями являются: уравнения непрерывности (58,1), уравнения Навье — Стокса, уравнение непрерывности для одной из компонент смеси (58,2) и уравнение (58,6), определяющее изменение энтропии. Надо, впрочем, отметить, что уравнения (58,2) и (58,6) определяют пока по существу только вид соответствующих гидродинамических уравнений, поскольку в них входят неопределенные величины: потоки i и q.

Эти уравнения делаются определенными лишь при подстановке i и q, выраженных через градиенты температуры и концентрации; соответствующие выражения будут получены в § 59.

Для изменения полной энтропии жидкости вычисление, полностью аналогичное произведенному в § 49 (с использованием (58,6) вместо (49,4)), приводит к результату

(члены, обусловленные вязкостью, для краткости не выписываем).

1
Оглавление
email@scask.ru