Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 21. Ламинарный следПри стационарном обтекании твердого тела вязкой жидкостью движение жидкости на больших расстояниях позади тела обладает своеобразным характером, который может быть исследован в общем виде вне зависимости от формы тела. Обозначим через U постоянную скорость натекающего на тело потока жидкости (направление U выберем в качестве оси Оказывается, что на больших расстояниях позади тела скорость v заметно отлична от нуля лишь в сравнительно узкой области вокруг оси х. В эту область, называемую ламинарным следом, попадают частицы жидкости, движущиеся вдоль линий тока, проходящих мимо обтекаемого тела на сравнительно небольших расстояниях от него. Поэтому движение жидкости в следе существенно завихрено. Дело в том, что источником завихренности при обтекании твердого тела вязкой жидкостью является именно его поверхность. Это легко понять, вспомнив, что в картине потенциального обтекания, отвечающей идеальной жидкости, на поверхности тела обращается в нуль только нормальная, но не тангенциальная скорость жидкости v. Между тем граничное условие прилипания для реальной жидкости требует обращения в нуль также и На линиях же тока, проходящих достаточно далеко от тела, влияние вязкости незначительно на всем их протяжении, и потому ротор скорости на них (равный нулю в натекающем из бесконечности потоке) остается практически равным нулю, как это было бы в идеальной жидкости. Таким образом, на больших расстояниях от тела движение жидкости можно считать потенциальным везде, за исключением лишь области следа. Выведем формулы, связывающие свойства движения жидкости в следе с действующими на обтекаемое тело силами. Полный поток импульса, переносимого жидкостью через какую-нибудь замкнутую поверхность, охватывающую собой обтекаемое тело, равен взятому по этой поверхности интегралу от тензора потока импульса:
Компоненты тензора
Напишем давление в виде
Выберем теперь в качестве рассматриваемого объема жидкости объем между двумя бесконечными плоскостями При определении полного потока импульса интеграл по бесконечно удаленной «боковой» поверхности исчезает (так как на бесконечности Таким образом, компоненты силы F равны разностям
где интегрирование производится по бесконечным плоскостям Вне следа движение потенциально, и потому справедливо уравнение Бернулли
или, пренебрегая членом
Мы видим, что в этом приближении подынтегральное выражение в
где интегрирование производится по площади поперечного сечения следа вдали от тела. Скорость Рассмотрим теперь силу (с компонентами
поскольку на бесконечности
Интегрирование в этих формулах фактически тоже производится лишь по площади сечения следа. Если обтекаемое тело обладает осью симметрии (не обязательно полной аксиальной симметрии) и обтекание происходит вдоль направления этой оси, то осью симметрии обладает и движение жидкости вокруг тела. В этом случае подъемная сила, очевидно, отсутствует. Вернемся снова к движению жидкости в следе. Оценка различных членов в уравнении Навье — Стокса показывает, что членом Пусть У — порядок величины ширины следа, т. е. тех расстояний от оси
Сравнив эти величины, найдем:
Эта величина действительно мала по сравнению с Чтобы определить закон убывания скорости в следе, обратимся к формуле (21,1). Область интегрирования в ней Поэтому оценка интеграла дает
Выяснив качественные особенности ламинарного движения вдали от обтекаемого тела, обратимся к выводу количественных формул, описывающих картину движения в следе и вне его. Движение внутри следа В уравнении Навье — Стокса стационарного движения
вдали от тела используем приближение Осеена — заменяем член
Ищем его решение в виде
Величину же
Это уравнение формально совпадает с двухмерным уравнением теплопроводности, причем роль времени играет
(ср. § 51). Коэффициент в этой формуле выражен через силу сопротивления с помощью формулы (21,1), в которой, ввиду быстрой сходимости интеграла, можно распространить его по всей плоскости
Опущенный нами член с Такой же вид, как (21,9) (но с другими коэффициентами), должны иметь и
Ясно поэтому, что
Для определения функции Ф поступаем следующим образом.. Пишем уравнение непрерывности, пренебрегая в нем продольной, производной
Продифференцировав это равенство по
Отсюда
Наконец, подставив выражение для
(постоянная интегрирования выбрана так, чтобы Ф оставалось конечным при В сферических координатах (с азимутом
Из (21,11-13) видно, что Если подъемная сила отсутствует, то движение в следе осесимметрично и Движение вне следа Вне следа течение жидкости можно считать потенциальным. Интересуясь лишь наименее быстро убывающими на больших расстояниях членами в потенциале Ф, ищем решение уравнения Лапласа
в виде суммы двух членов:
Первый член здесь сферически симметричен и связан с силой Для функции
Решение этого уравнения, конечное при
Коэффициент b можно определить из условия сшивки с решением внутри следа. Дело в том, что формула (21,13) относится к области углов
а второй член в (21,14) — к Сравнив оба выражения, найдем, что надо положить Для определения коэффициента а в (21,14) замечаем, что полный поток жидкости через сферу S большого радиуса
Поэтому через всю остальную площадь сферы должно вытекать, столько же жидкости, т. е. должно быть
В силу малости
откуда Таким образом, собирая все полученные выражения, находим следующую формулу для потенциала скорости:
Этим и определяется движение во всей области вне следа вдали от тела. Потенциал убывает с расстоянием как
|
1 |
Оглавление
|