Главная > Теоретическая физика. Т. VI. Гидродинамика
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

§ 123. Сверхзвуковое обтекание заостренного тела

Форма, которой должно обладать тело для того, чтобы при сверхзвуковом движении быть хорошо обтекаемым, т. е. испытывать по взможности малую силу сопротивления, существенно отличается от соответствующей формы для дозвукового движения. Напомним, что в дозвуковом случае хорошо обтекаемыми являются продолговатые тела, закругленные спереди и заостренные сзади. При сверхзвуковом же обтекании такого тела перед ним. появилась бы сильная ударная волна, что привело бы к сильному возрастанию сопротивления. Поэтому в сверхзвуковом случае хорошо обтекаемое удлиненное тело должно иметь заостренным не только задний, но и передний конец, причем угол заострения должен быть малым; если ось тела наклонена к направлению движения, то угол наклона (угол атаки) тоже должен быть малым.

При стационарном сверхзвуковом обтекании тела такой формы скорость газа даже вблизи тела будет везде лишь незначительно отличаться по величине и направлению от скорости натекающего потока, а образующиеся ударные волны будут обладать малой интенсивностью (интенсивность головной волны убывает вместе с уменьшением раствора обтекаемого угла). Вдали от тела движение газа будет представлять собой расходящиеся звуковые волны. Основную часть сопротивления газа можно представлять себе как обусловленную переходом кинетической энергии движущегося тела в энергию излучаемых им звуковых волн. Это сопротивление, специфическое для сверхзвукового движения, называют волновым, оно может быть вычислено в общем виде при любой форме сечения тела (Th. Кагтап, N. В. Moore, 1932).

Описанный характер течения делает возможным применение линеаризованного уравнения для потенциала (114,4):

(123.1)

где для краткости введена положительная постоянная

(ось х направлена по направлению движения, индекс 1 отличает величины, относящиеся к натекающему потоку); есть не что иное, как тангенс угла Маха.

Уравнение (123,1) формально совпадает с двухмерным волновым уравнением, причем играет роль времени; роль скорости распространения волн. Это обстоятельство не случайно и имеет глубокий физический смысл, так как движение газа вдали от тела представляет собой, как уже указано, именно излучаемые телом расходящиеся звуковые волны. Если представить себе газ на бесконечности покоящимся, а тело движущимся, то площадь поперечного сечения тела в заданном месте пространства будет меняться со временем, причем расстояние, до которого к моменту t распространятся возмущения (т. е. расстояние до конуса Маха), будет расти как таким образом, мы будем иметь дело с «двухмерным» излучением звука (распространяющегося со скоростью ) пульсирующим контуром.

Руководствуясь этой «звуковой аналогией», можно сразу же написать искомое выражение для потенциала скорости газа, воспользовавшись выражением (74,15) для потенциала излучаемых пульсирующим источником цилиндрических звуковых волн (на расстояниях, больших по сравнению с размерами источника), заменив в последнем на Пусть — площадь сечения тела плоскостями, перпендикулярными к направлению обтекания (оси я), а длина тела в этом направлении пусть будет начало координат выберем в переднем конце тела. Тогда будем иметь:

(123,3)

в качестве нижнего предела написан нуль, так как при (как и при ) надо положить тождественно

Таким образом, мы полностью определили движение газа на расстояниях от оси, больших по сравнению с толщиной тела Исходящие от тела возмущения в сверхзвуковом потоке распространяются, разумеется, только в область позади конуса с вершиной в переднем конце тела; перед этим конусом имеем просто (однородный поток). Между конусами потенциал определяется формулой (123,3); позади же конуса (с вершиной в заднем конце тела) в этой формуле верхний предел заменяется постоянной величиной I. Оба указанных конуса представляют собой в рассматриваемом приближении слабые разрывы; в действительности это — ударные волны слабой интенсивности.

Действующая на тело сила сопротивления есть не что иное, как уносимая звуковыми волнами в единицу времени х-компонента импульса. Выберем в качестве контрольной поверхности цилиндрическую поверхность достаточно большого радиуса с осью вдоль оси Плотность потока -компоненты импульса через эту поверхность есть

При интегрировании по всей поверхности первый член исчезает, так как интеграл от есть равный нулю полный поток массы газа через контрольную поверхность. Поэтому остается

(123,4)

На больших расстояниях (в волновой зоне) производные от потенциала вычисляются так, как это было сделано в § 74 (см. формулу (74,17)), и получается:

Это выражение подставляем в (123,4), причем квадрат интеграла переписываем в виде двойного интеграла; обозначая для краткости получим:

Произведем интегрирование по после изменения порядка интегрирования оно должно производиться в пределах от большего из и до . В качестве верхнего предела берем сначала некоторое большое, но конечное L, которое затем можно устремить к бесконечности. Таким образом, получим:

Интеграл от члена с постоянным множителем тождественно исчезает, так как на заостренных концах тела обращается в нуль не только площадь но и ее производная . Таким образом, окончательно получим:

или

(123,5)

Это и есть искомая формула для волнового сопротивления тонкого заостренного тела. Порядок величины стоящего здесь интеграла есть где — некоторая средняя площадь сечения тела. Поэтому

Коэффициент сопротивления удлиненного тела условимся определять как

(123,6)

относя его к квадрату длины тела. В данном случае

(123,7)

он пропорционален квадрату площади поперечного сечения тела.

Обратим внимание на формальную аналогию между формулой (123,5) и формулой (47,4) для индуктивного сопротивления тонкого крыла: вместо функции в (47,4) здесь стоит функция Вввиду этой аналогии для вычисления интеграла (123,5) можно пользоваться тем же методом, который был изложен в конце § 47.

Следует также заметить, что определяемое формулой (123,5) волновое сопротивление не изменится, если изменить направление обтекания на обратное, — стоящий в этой формуле интеграл не зависит от того, в каком направлении проходится длина тела. Это свойство силы сопротивления характерно именно для линеаризованной теории.

Наконец, несколько слов об области применимости полученной формулы. К этому вопросу можно подойти следующим образом. Амплитуда колебаний газовых частиц в излучаемых телом звуковых волнах — порядка величины толщины тела, которую мы обозначим посредством . Скорость же колебаний — соответственно порядка величины отношения амплитуды к периоду волны Но линейное приближение для распространения звуковых волн (т. е. линеаризованное уравнение для потенциала) во всяком случае требует малости скорости движения газа в волне по сравнению со скоростью звука, т. е. должно быть или, что фактически то же:

(123,8)

Таким образом, изложенная теория становится неприменимой при значениях сравнимых с отношением длины тела к его толщине.

Она неприменима, разумеется, и в обратном предельном случае слишком близких к единице значений когда тоже недопустима линеаризация уравнений.

1
Оглавление
email@scask.ru