Главная > Теоретическая физика. Т. VI. Гидродинамика
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

ГЛАВА XIV. ГИДРОДИНАМИКА ГОРЕНИЯ

§ 128. Медленное горение

Скорость химической реакции (измеряемая, скажем, числом прореагировавших в единицу времени молекул) зависит от температуры газовой смеси, в которой она происходит, увеличиваясь вместе с ней. Во многих случаях эта зависимость очень сильная. Скорость реакции может при этом оказаться при обычных температурах настолько малой, что реакция практически вовсе не идет, несмотря на то, что состоянию термодинамического (химического) равновесия соответствовала бы газовая смесь, компоненты которой прореагировали друг с другом. При достаточном же повышении температуры реакция протекает со значительной скоростью. Если реакция эндотермична, то для ее протекания необходим непрерывный подвод тепла извне; если ограничиться одним только начальным повышением температуры смеси, то прореагирует лишь незначительное количество вещества, вслед за чем температура газа настолько понизится, что реакция снова прекратится. Совсем иначе будет обстоять дело при сильно экзотермической реакции, сопровождающейся значительным выделением тепла. Здесь достаточно повысить температуру хотя бы в одном каком-нибудь месте смеси; начавшаяся в этом месте реакция в результате выделения тепла сама будет производить нагревание окружающего газа и, таким образом, реакция, раз начавшись, будет сама собой распространяться по газу. В таких случаях говорят о медленном горении газовой смеси или о дефлаграции.

Горение газовой смеси непременно сопровождается также и движением газа. Другими словами, процесс горения представляет собой, отвлекаясь от его химической стороны, также и газодинамический процесс.

В общем случае для определения режима горения необходимо совместное решение системы уравнений, включающей в себя как уравнения химической кинетики данной реакции, так и уравнения движения газовой смеси.

Положение, однако, существенно упрощается в том весьма: важном случае (с которым обычно и приходится иметь дело), когда характерные размеры определяющие условия данной конкретной задачи, достаточно велики (по сравнению с чем именно, будет выяснено ниже). Мы увидим, что в таких случаях чисто газодинамическая задача может быть в известном смысле отделена от задачи химической кинетики.

Область сгоревшего газа (т. е. область, в которой реакция уже закончилась и газ представляет собой смесь продуктов горения) отделена от газа, в котором горение еще не началось, некоторым переходным слоем, где как раз и происходит самая реакция (зона горения или пламя), с течением времени этот слой передвигается вперед со скоростью, которую можно назвать скоростью распространения горения в газе. Величина скорости распространения зависит от интенсивности теплопередачи из зоны горения в ненагретую исходную газовую смесь, причем основной механизм теплопередачи состоит в обычной теплопроводности (В. А. Михельсон, 1890).

Порядок величины ширины зоны горения б определяется средним расстоянием, на которое успевает распространиться выделяющееся в реакции тепло за то время , в течение которого длится эта реакция (в данном участке газа). Время есть величина, характерная для данной реакции, и зависит лишь от термодинамического состояния горящего газа (но не от характеристических параметров задачи). Если — температуропроводность газа, то имеем см. (51,6):

(128,1)

Уточним теперь сделанное выше предположение: мы будем считать, что характерные размеры задачи велики по сравнению с толщиной зоны горения При соблюдении этого условия можно выделить чисто газодинамическую задачу. При определении движения газа можно пренебречь толщиной зоны горения и рассматривать ее просто как поверхность, разделяющую продукты горения и несгоревший газ. На этой поверхности (фронт пламени) состояние газа испытывает скачок, т. е. она представляет собой своеобразную поверхность разрыва.

Скорость перемещения этого разрыва относительно самого газа (в нормальном к фронту направлении) называют нормальной скоростью пламени. За время горение успевает распространиться на расстояние порядка величины ; поэтому искомая скорость пламени:

(128,2)

Обычная температуронроводность газа — порядка величины произведения длины свободного пробега молекул на их тепловую скорость, или, что то же, произведения времени свободного пробега на квадрат скорости. Имея в виду, что тепловая скорость молекул совпадает по порядку величины со скоростью звука, найдем:

Отнюдь не каждое столкновение молекул сопровождается химической реакцией между ними; напротив, в реакцию вступает лишь очень незначительная доля сталкивающихся молекул. Это значит, что и потому . Таким образом, в рассматриваемом режиме скорость распространения пламени мала по сравнению со скоростью звука.

На поверхности разрыва, заменяющего собой зону горения, как и на всяком вообще разрыве, должны выполняться условия непрерывности потоков вещества, импульса и энергии. Первое из этих условий, как обычно, определяет отношение нормальных к поверхности разрыва компонент скорости газа относительно разрыва: или

(128,3)

где — удельные объемы несгоревшего газа и продуктов горения. Согласно общим результатам, полученным в § 84 для произвольных разрывов, при наличии скачка нормальной скорости касательная компонента скорости должна быть непрерывна. Поэтому линии тока преломляются на поверхности разрыва.

Благодаря малости нормальной скорости распространения пламени по сравнению со скоростью звука условие непрерывности потока импульса сводится к непрерывности давления, а потока энергии — к непрерывности тепловой функции:

(128,4)

При использовании этих условий следует помнить, что газы по обе стороны рассматриваемого разрыва химически различны, а потому их термодинамические величины не являются одинаковыми функциями друг от друга.

Считая газ политропным, имеем:

аддитивные постоянные нельзя полагать здесь равными нулю, как мы это делали в случае одного газа (выбирая соответствующим образом начало отсчета энергии), поскольку здесь различны. Введем обозначение есть не что иное, как теплота, выделяющаяся при реакции (отнесенная к единице массы), если бы эта реакция происходила при абсолютном нуле температуры. Тогда получаем следующие соотношения между термодинамическими величинами исходного (газ 1) и сгоревшего (газ 2) газов:

Наличие определенной нормальной скорости распространения пламени, не зависящей от скоростей движения самого газа, приводит к установлению определенной формы фронта пламени при стационарном горении в движущемся потоке газа. Примером является горение газа, вытекающего из конца трубки (отверстия горелки). Если v есть средняя (по сечению трубки) скорость газа, то очевидно, что , где — площадь поперечного сечения трубки, — полная площадь поверхности фронта пламени.

Возникает вопрос о границах устойчивости описанного режима по отношению к малым возмущениям — условиях реального его существования. Благодаря малости скорости движения газа по сравнению со скоростью звука, при исследовании устойчивости фронта пламени можно рассматривать газ как несжимаемую идеальную (невязкую) среду, причем нормальная скорость распространения пламени предполагается заданной постоянной величиной. Такое исследование приводит к результату о неустойчивости фронта (Л. Д. Ландау, 1944; см. задачу 1 к этому параграфу). В таком виде это исследование относится лишь к достаточно большим значениям чисел Рейнольдса

Учет вязкости газа, однако, в данных условиях сам по себе не может привести к очень большому критическому значению этих чисел.

Такая неустойчивость должна была бы приводить к самопроизвольной турбулизации пламени. Между тем экспериментальные данные свидетельствуют о том, что самопроизвольная турбулизация пламени фактически не происходит, — во всяком случае вплоть до очень больших значений числа Рейнольдса. Это связано с наличием в реальных условиях ряда факторов (гидродинамических и диффузионно-тепловых), стабилизирующих пламя. Изложение этих сложных вопросов выходит за рамки этой книги, и мы ограничимся здесь лишь краткими замечаниями о некоторых из возможных источников стабилизации.

Существенную роль в качестве такого источника может играть влияние искривления фронта на скорость горения. Если учитывать только теплопроводность, то на вогнутых (по отношению к исходной горючей смеси) участках фронта скорость повышается (благодаря улучшению условий теплопередачи в охватываемую вогнутостью свежую смесь), а на выпуклых местах уменьшается; этот эффект стремится выровнять фронт, т. е. влияет в стабилизирующем направлении. Изменение же диффузионного режима, как это следует из аналогичных соображений, оказывает дестабилизирующее действие. Таким образом, общий знак эффекта зависит от соотношения между коэффициентами температуропроводности и диффузии П. Дроздов, Я. Б. Зельдович, 1943). Для феноменологического описания влияния искривления фронта на скорость горения можно ввести в нее слагаемое, пропорциональное кривизне фронта (G. Н. Markstein, 1951); при надлежащем знаке этого члена его введение в граничные условия на фронте горения приводит к устранению неустойчивости возмущений с малыми длинами волн. Развитие неустойчивых (в линейном приближении) возмущений может стабилизироваться на определенном стационарном (по их амплитуде) пределе за счет нелинейных эффектов (R. Е. Petersen, N. W. Emmons, 1956; Я. Б. Зельдович, 1966); этот механизм может привести к «ячеистой» структуре пламени.

Распространяющееся по горючей смеси пламя приводит в движение окружающий газ на значительном протяжении. Неизбежность возникновения сопутствующего горению движения видна уже из того, что ввиду различия между скоростями продукты горения должны двигаться относительно несгоревшега газа со скоростью

В ряде случаев это движение приводит также и к возникновению ударных волн. Они не имеют непосредственного отношения к процессу горения, и их возникновение связано с невозможностью удовлетворить иным образом необходимым граничным условиям. Рассмотрим, например горение, распространяющееся от закрытого конца трубы. На рис. есть зона горения. Газ в областях 1 и 3 есть исходная несгоревшая газовая смесь, а в области 2 — продукты горения. Скорость передвижения зоны горения относительно находящегося перед ним газа 1 есть величина, определяющаяся свойствами реакции и условиями теплопередачи, и должна рассматриваться как заданная. Скорость движения пламени относительно газа 2 определится после этого непосредственно условием (128,3). На закрытом конце трубы скорость газа должна обращаться в нуль; поэтому во всей области 2 газ будет неподвижным. Газ же должен, следовательно, двигаться относительно трубы с постоянной скоростью, равной . В передней части трубы вдали от пламени газ тоже должен быть неподвижным. Удовлетворить этому условию можно, только вводя ударную волну ( на рис. 131), в которой скорость газа испытывает скачок, так что газ 3 оказывается неподвижным. По заданному скачку скорости определяются также и скачки остальных величин, и скорость распространения самой волны. Таким образом, мы видим, что распространяющийся фронт пламени действует как поршень, толкающий находящийся перед ним газ. Ударная волна движется быстрее пламени, так что количество вовлекаемого в движение газа с течением времени возрастает.

При достаточно больших значениях числа Рейнольдса сопутствующее горению движение газа в трубе становится турбулентным, что в свою очередь оказывает обратное турбулизирующее действие на пламя. В вопросах о турбулентном горении еще много неясного, и они здесь не будут рассматриваться.

Рис. 131

1
Оглавление
email@scask.ru