Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
ГЛАВА XIV. ГИДРОДИНАМИКА ГОРЕНИЯ§ 128. Медленное горениеСкорость химической реакции (измеряемая, скажем, числом прореагировавших в единицу времени молекул) зависит от температуры газовой смеси, в которой она происходит, увеличиваясь вместе с ней. Во многих случаях эта зависимость очень сильная. Скорость реакции может при этом оказаться при обычных температурах настолько малой, что реакция практически вовсе не идет, несмотря на то, что состоянию термодинамического (химического) равновесия соответствовала бы газовая смесь, компоненты которой прореагировали друг с другом. При достаточном же повышении температуры реакция протекает со значительной скоростью. Если реакция эндотермична, то для ее протекания необходим непрерывный подвод тепла извне; если ограничиться одним только начальным повышением температуры смеси, то прореагирует лишь незначительное количество вещества, вслед за чем температура газа настолько понизится, что реакция снова прекратится. Совсем иначе будет обстоять дело при сильно экзотермической реакции, сопровождающейся значительным выделением тепла. Здесь достаточно повысить температуру хотя бы в одном каком-нибудь месте смеси; начавшаяся в этом месте реакция в результате выделения тепла сама будет производить нагревание окружающего газа и, таким образом, реакция, раз начавшись, будет сама собой распространяться по газу. В таких случаях говорят о медленном горении газовой смеси или о дефлаграции. Горение газовой смеси непременно сопровождается также и движением газа. Другими словами, процесс горения представляет собой, отвлекаясь от его химической стороны, также и газодинамический процесс. В общем случае для определения режима горения необходимо совместное решение системы уравнений, включающей в себя как уравнения химической кинетики данной реакции, так и уравнения движения газовой смеси. Положение, однако, существенно упрощается в том весьма: важном случае (с которым обычно и приходится иметь дело), когда характерные размеры Область сгоревшего газа (т. е. область, в которой реакция уже закончилась и газ представляет собой смесь продуктов горения) отделена от газа, в котором горение еще не началось, некоторым переходным слоем, где как раз и происходит самая реакция (зона горения или пламя), с течением времени этот слой передвигается вперед со скоростью, которую можно назвать скоростью распространения горения в газе. Величина скорости распространения зависит от интенсивности теплопередачи из зоны горения в ненагретую исходную газовую смесь, причем основной механизм теплопередачи состоит в обычной теплопроводности (В. А. Михельсон, 1890). Порядок величины ширины зоны горения б определяется средним расстоянием, на которое успевает распространиться выделяющееся в реакции тепло за то время
Уточним теперь сделанное выше предположение: мы будем считать, что характерные размеры задачи велики по сравнению с толщиной зоны горения Скорость перемещения
Обычная температуронроводность газа — порядка величины произведения длины свободного пробега молекул на их тепловую скорость, или, что то же, произведения времени свободного пробега
Отнюдь не каждое столкновение молекул сопровождается химической реакцией между ними; напротив, в реакцию вступает лишь очень незначительная доля сталкивающихся молекул. Это значит, что На поверхности разрыва, заменяющего собой зону горения, как и на всяком вообще разрыве, должны выполняться условия непрерывности потоков вещества, импульса и энергии. Первое из этих условий, как обычно, определяет отношение нормальных к поверхности разрыва компонент скорости газа относительно разрыва:
где Благодаря малости нормальной скорости распространения пламени по сравнению со скоростью звука условие непрерывности потока импульса сводится к непрерывности давления, а потока энергии — к непрерывности тепловой функции:
При использовании этих условий следует помнить, что газы по обе стороны рассматриваемого разрыва химически различны, а потому их термодинамические величины не являются одинаковыми функциями друг от друга. Считая газ политропным, имеем:
аддитивные постоянные нельзя полагать здесь равными нулю, как мы это делали в случае одного газа (выбирая соответствующим образом начало отсчета энергии), поскольку здесь
Наличие определенной нормальной скорости распространения пламени, не зависящей от скоростей движения самого газа, приводит к установлению определенной формы фронта пламени при стационарном горении в движущемся потоке газа. Примером является горение газа, вытекающего из конца трубки (отверстия горелки). Если v есть средняя (по сечению трубки) скорость газа, то очевидно, что Возникает вопрос о границах устойчивости описанного режима по отношению к малым возмущениям — условиях реального его существования. Благодаря малости скорости движения газа по сравнению со скоростью звука, при исследовании устойчивости фронта пламени можно рассматривать газ как несжимаемую идеальную (невязкую) среду, причем нормальная скорость распространения пламени предполагается заданной постоянной величиной. Такое исследование приводит к результату о неустойчивости фронта (Л. Д. Ландау, 1944; см. задачу 1 к этому параграфу). В таком виде это исследование относится лишь к достаточно большим значениям чисел Рейнольдса Учет вязкости газа, однако, в данных условиях сам по себе не может привести к очень большому критическому значению этих чисел. Такая неустойчивость должна была бы приводить к самопроизвольной турбулизации пламени. Между тем экспериментальные данные свидетельствуют о том, что самопроизвольная турбулизация пламени фактически не происходит, — во всяком случае вплоть до очень больших значений числа Рейнольдса. Это связано с наличием в реальных условиях ряда факторов (гидродинамических и диффузионно-тепловых), стабилизирующих пламя. Изложение этих сложных вопросов выходит за рамки этой книги, и мы ограничимся здесь лишь краткими замечаниями о некоторых из возможных источников стабилизации. Существенную роль в качестве такого источника может играть влияние искривления фронта на скорость горения. Если учитывать только теплопроводность, то на вогнутых (по отношению к исходной горючей смеси) участках фронта скорость Распространяющееся по горючей смеси пламя приводит в движение окружающий газ на значительном протяжении. Неизбежность возникновения сопутствующего горению движения видна уже из того, что ввиду различия между скоростями В ряде случаев это движение приводит также и к возникновению ударных волн. Они не имеют непосредственного отношения к процессу горения, и их возникновение связано с невозможностью удовлетворить иным образом необходимым граничным условиям. Рассмотрим, например горение, распространяющееся от закрытого конца трубы. На рис. При достаточно больших значениях числа Рейнольдса сопутствующее горению движение газа в трубе становится турбулентным, что в свою очередь оказывает обратное турбулизирующее действие на пламя. В вопросах о турбулентном горении еще много неясного, и они здесь не будут рассматриваться.
Рис. 131
|
1 |
Оглавление
|