Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 102. Образование разрывов в звуковой волнеПлоская бегущая звуковая волна как точное решение уравнений движения тоже представляет собой простую волну. Мы можем воспользоваться полученными в предыдущем параграфе общими результатами для того, чтобы выяснить некоторые свойства звуковых волн малой амплитуды во втором приближении (понимая под первым приближением то, которое соответствует обычному линейному волновому уравнению). Прежде всего отметим, что по истечении достаточно долгого времени в звуковой волне на протяжении каждого ее периода должен возникнуть разрыв. Этот эффект приведет затем к весьма сильному затуханию волны, как это было объяснено в § 101, Фактически это может относиться, разумеется, лишь к достаточно сильному звуку; в противном случае звуковая волна успеет поглотиться благодаря обычному эффекту вязкости и теплопроводности газа раньше, чем в ней успеют развиться эффекты высших порядков по амплитуде. Эффект искажения профиля волны проявляется и в другом отношении. Если в некоторый момент времени волна была чисто гармонической, то с течением времени соответственно изменению формы ее профиля она перестанет быть таковой. Движение, однако, останется периодическим с прежним периодом. В разложение этой волны в ряд Фурье войдут теперь наряду с членом с основной частотой со также и члены с кратными частотами то ( Скорость и перемещения точек профиля волны (распространяющейся в положительном направлении оси х) в первом приближении получается, если положить в
или с помощью выражения (99,10) для производной ди/др:
где для краткости введено обозначение
Для политропных газов В общем случае произвольной амплитуды волна перестает быть простой после появления в ней разрывов. Существенно, однако, что волна малой амплитуды во втором приближении остается простой и при наличии разрывов. Убедиться в этом можно следующим образом. Изменения скорости, давления и удельного объема в ударной волне связаны друг с другом соотношением
Изменение же скорости v вдоль некоторого участка длины оси х в простой волне равно интегралу
Простое вычисление с помощью разложения в ряд показывает, что оба написанных выражения отличаются друг от друга только в членах третьего порядка (при вычислении следует иметь в виду, то изменение энтропии в разрыве есть величина третьего порядка малости, а в простой волне энтропия вообще постоянна). Отсюда следует, что с точностью до членов второго порядка звуковая волна с каждой стороны от образовавшегося в ней разрыва остается простой, причем на самом разрыве будет выполнено надлежащее граничное условие. В следующих же приближениях это уже не будет иметь места, что связано с появлением отраженных от поверхности разрыва волн. Выведем теперь условие, с помощью которого можно определить местонахождение разрывов в бегущей звуковой волне (все в том же втором приближении). Пусть и есть скорость движения разрыва (относительно неподвижной системы координат),
откуда
С точностью до членов первых двух порядков эта величина равна значению производной
Отсюда можно получить следующее простое геометрическое условие, определяющее место ударной волны. На рис. 82 кривой линией изображен профиль распределения скоростей, соответствующий простой волне, и пусть отрезок
взятым по кривой
(при дифференцировании интеграла надо иметь в виду, что хотя сами пределы интегрирования
Рис. 82 Таким образом, интеграл —
Геометрически это означает, что площадь Образование разрывов в звуковой волне представляет собой пример самопроизвольного возникновения ударных волн в отсутствии каких бы то ни было особенностей во внешних условиях движения. Следует подчеркнуть, что хотя ударная волна может самопроизвольно возникнуть в некоторый дискретный момент времени, она не может столь же дискретным образом исчезнуть. Раз возникнув, ударная волна затухает в дальнейшем лишь асимптотически при неограниченном увеличении времени. Рассмотрим одиночный одномерный звуковой импульс сжатия газа, в котором уже успела образоваться ударная волна, и выясним, по какому закону будет происходить окончательное затухание этой волны. На поздних стадиях своего распространения звуковой импульс с ударной волной будет иметь треугольный профиль скоростей, — линейный профиль при своем дальнейшем деформировании остается линейным).
Рис. 83 Пусть в некоторый момент времени (который примем за момент
откуда
Полная энергия бегущего звукового импульса (отнесенная к единице площади ее фронта) равна
При Длина же импульса возрастает как Рассмотрим теперь предельные (на больших расстояниях от источника) свойства ударных волн, образующихся в цилиндрических и сферических звуковых волнах (Л. Д. Ландау, 1945). Начнем с цилиндрического случая. На достаточно больших расстояниях
Первый член представляет собой обычную скорость звука и соответствует перемещению волны «без изменения формы профиля» (отвлекаясь от общего уменьшения амплитуды как
Искажение профиля цилиндрической волны растет медленнее, чем у плоской волны (где смещение Цилиндрический случай существенно отличается от плоского прежде всего тем, что одиночный импульс не может состоять из одного только сжатия или только разрежения; если за передним, фронтом звукового импульса имеется область сжатия, то за ней должна следовать область расширения (см. § 71). Точка максимального разрежения будет отставать от всех расположенных сзади нее, в результате чего и здесь возникнет опрокидывание профиля и появится разрыв. Таким образом, в цилиндрическом звуковом импульсе образуются две ударные волны. В переднем разрыве скорость скачком возрастает от нуля, затем следует область постепенного уменьшения сжатия, сменяющегося разрежением, после чего давление вновь возрастает скачком во втором разрыве. Но цилиндрический звуковой импульс специфичен (по сравнению как с плоским, так и сферическим случаями) еще и в том отношении, что он не сможет иметь заднего фронта — стремление и к нулю происходит лишь асимптотически. Это приводит к тому, что в заднем разрыве v возрастает не до нуля, а лишь до некоторого конечного (отрицательного) значения, и лишь затем асимптотически стремится к нулю. В результате возникает профиль изображенного на рис. 84 вида.
Рис. 84 Предельный закон, по которому будет происходить окончательное затухание ударных волн со временем (или, что то же, с расстоянием
где
откуда
Наконец, рассмотрим сферический случай. Общее убывание амплитуды расходящейся звуковой волны происходит как
после чего найдем смещение
Мы видим, что искажение профиля сферической волны растет с расстоянием лишь логарифмически — гораздо медленнее, чем в плоском и даже цилиндрическом случаях. Сферическое распространение звукового импульса сжатия должно сопровождаться, как и в цилиндрическом случае, следующим за сжатием разрежением (см. § 70). Поэтому и здесь должны образоваться два разрыва (сферический одиночный импульс может, однако, иметь задний фронт и тогда во втором разрыве v возрастает скачком сразу до нуля). Тем же способом найдем предельные законы возрастания длины импульса и убывания интенсивности ударной волны:
где а — некоторая постоянная размерности длины.
|
1 |
Оглавление
|