Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
ГЛАВА XIII. ОБТЕКАНИЕ КОНЕЧНЫХ ТЕЛ§ 122. Образование ударных воли при сверхзвуковом обтекании телПростые соображения показывают, что при обтекании произвольного тела сверхзвуковым потоком перед телом возникает ударная волна. Действительно, в сверхзвуковом потоке возмущения, обусловленные наличием обтекаемого тела, распространяются только вниз по течению. Поэтому натекающий на тело однородный сверхзвуковой поток должен был бы доходить до самого переднего конца тела невозмущенным. Но тогда на поверхности этого конца нормальная компонента скорости газа была бы отличной от нуля в противоречии с необходимым граничным условием. Выходом из этого положения может являться только возникновение ударной волны, в результате чего движение газа между нею и передним концом тела становится дозвуковым.
Рис. 127 Таким образом, при сверхзвуковом обтекании тела перед ним возникает ударная волна; ее называют головной. При обтекании тела с тупым передним концом эта волна не соприкасается с самим телом. Спереди от ударной волны поток однороден, а позади нее движение меняется, и поток огибает обтекаемое тело (рис. 127, а). Поверхность ударной волны уходит на бесконечность, причем вдали от тела, где интенсивность волны мала, она пересекает направление набегающего потока под углом, близким к углу Маха. Характерной чертой обтекания тела с тупым концом является существование дозвуковой области течения за ударной волной — позади наиболее выдающейся вперед части ее поверхности; эта область простирается до обтекаемого тела и, таким образом, ограничена поверхностью разрыва, поверхностью тела и «боковой» звуковой поверхностью (пунктирные линии на рис. 127, а). Ударная волна может соприкасаться с телом только если его передний конец заострен. Тогда поверхность разрыва тоже обладает точкой заострения, совпадающей с острием тела (рис, 127,6); при несимметричном обтекании часть этой поверхности может являться поверхностью слабого разрыва. Для тела заданной формы такой режим обтекания оказывается, однако, возможным лишь при скоростях, превышающих определенный предел; при меньших скоростях ударная волна отрывается от носика тела, несмотря на налачие острия (см. § 113). Рассмотрим осесимметричное сверхзвуковое обтекание тела вращения и определим давление на переднем закругленном конце тела (в точке остановки — точка О на рис. 127, а). Из соображений симметрии очевидно, что линия тока, заканчивающаяся в точке О, пересекает ударную волну в нормальном к ней направлении, так что в точке А нормальная к поверхности разрыва компонента скорости совпадает с полной скоростью. Значения величин в набегающем потоке отмечаем, как обычно, индексом 1, а значения величин в точке А на задней стороне ударной волны — индексом 2. Последние определяются по формулам (89,6-7) в виде
Давление в точке О (в которой скорость газа можно получить теперь с помощью формул, определяющих изменение величин вдоль линии тока. Имеем (см. задачу к § 83)
и простое вычисление приводит к следующему результату:
Этим и определяется давление на переднем конце тела, обтекаемого сверхзвуковым потоком Для сравнения приведем формулу для давления в точке остановки, которое получилось бы в результате непрерывного адиабатического торможения газа без ударной волны (как это было бы при дозвуковом обтекании): (122,2) При обе формулы дают одинаковое значение а при давление (122,2) всегда превышает истинное давление, даваемое формулой (122,1). В предельном случае очень больших скоростей формула (122,1) дает (122,3) т. e. давление пропорционально квадрату скорости обтекания. На основании этого результата можно сделать заключение о том, что и полная испытываемая телом сила сопротивления при скоростях, больших по сравнению со скоростью звука, пропорциональна квадрату скорости. Обращаем внимание на то, что этот закон — такой же, по которому меняется сила сопротивления при скоростях, малых по сравнению со скоростью звука, но настолько больших, чтобы число Рейнольдса было достаточно велико (см. § 45). Помимо самого факта необходимости возникновения ударных волн, можно еще утверждать, что при сверхзвуковом обтекании конечного тела на больших расстояниях от него во всяком случае должны иметься две следующие друг за другом ударные волны (Л. Ландау, 1945). Действительно, на больших расстояниях от тела вызываемые им возмущения слабы и поэтому их можно рассматривать как цилиндрическую звуковую волну, расходящуюся от оси проходящей через тело параллельно направлению обтекания; рассматривая, как это мы везде делаем, движение в той системе координат, в которой тело покоится, мы будем иметь волну, в которой роль времени играет а роль скорости распространения (см. ниже § 123). Поэтому мы можем непосредственно применить результаты, полученные в § 102 для цилиндрической волны на больших расстояниях от источника. Таким образом, мы приходим к следующей картине ударных волн на далеком расстоянии от тела: в первой ударной волне давление испытывает скачок вверх, так что за ней возникает сгущение; затем давление постепенно убывает, сгущение сменяется разрежением, после чего давление вновь возрастает скачком во второй ударной волне. Интенсивность передней ударной волны падает с увеличением расстояния от оси как а расстояние между обеими волнами возрастает как Проследим за появлением и развитием ударных волн при постепенном увеличении числа Маха Сверхзвуковая область в газовом потоке появляется впервые при некотором значении в виде области, прилегающей к поверхности обтекаемого тела. В этой области появляется по крайней мере одна ударная волна — обычно замыкающая сверхзвуковую область. По мере увеличения эта область расширяется, а вместе с ней удлиняется и ударная волна, существование которой при было доказано (для плоского случая) в § 120; тем самым была доказана необходимость первого появления ударной волны уже при Как только начинает превышать единицу, появляется еще одна ударная волна — головная волна, пересекающая весь бесконечно широкий натекающий поток газа. При в точности равном единице, все течение впереди тела является дозвуковым. Поэтому при но сколь угодно близком к единице, сверхзвуковая часть натекающего потока, а с нею и головная ударная волна находятся сколь угодно далеко впереди тела. По мере дальнейшего увеличения головная волна постепенно приближается к телу. Ударная волна в местной сверхзвуковой зоне должна каким-то образом пересекаться со звуковой линией (мы будем говорить о плоском случае). Вопрос о характере такого пересечения нельзя считать выясненным. Если ударная волна заканчивается в точке пересечения, то в самой этой точке ее интенсивность обращается в ноль, а во всей плоскости вблизи точки пересечения движение околозвуковое. Картина течения в таком случае должна описываться соответствующим решением уравнения Эйлера — Трикоми. Помимо общих условий однозначности решения в физической плоскости и граничных условий на ударной волне, должны выполняться еще и следующие условия: 1) если по обе стороны от ударной волны движение сверхзвуковое (так будет, если в точке пересечения кончается только ударная волна, «упираясь» в звуковую линию), то ударная волна должна быть «приходящей» по отношению к точке пересечения, 2) «приходящие» к точке пересечения характеристические линии в сверхзвуковой области не должны нести на себе никаких особенностей течения (особенности могли бы возникнуть лишь в результате самого пересечения и, таким образом, должны были бы уноситься от точки пересечения). Существование решения уравнения Эйлера—Трикоми, удовлетворяющего всем этим требованиям, по-видимому, еще не доказано. Другая возможность для конфигурации ударной волны и звуковой линии в местной сверхзвуковой зоне состоит в окончании в точке пересечения одной лишь звуковой линии (рис. 128, б); в этой точке интенсивность ударной волны отнюдь не обращается в нуль, так что течение вблизи нее является околозвуковым лишь по одну сторону от ударной волны. Сама ударная волна может при этом одним концом «упираться» в твердую поверхность, а другим (или обоими) начинаться непосредственно в сверхзвуковом потоке конец § 115).
|
1 |
Оглавление
|