Главная > Теоретическая физика. Т. VI. Гидродинамика
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

§ 35. Турбулентная область и явление отрыва

Турбулентное движение является, вообще говоря, вихревым. Однако распределение завихренности вдоль объема жидкости обнаруживает при турбулентном движении (при очень больших R) существенные особенности. Именно, при «стационарном» турбулентном обтекании тел весь объем жидкости можно обычно разделить на две области, отграниченные одна от другой. В одной из них движение является вихревым, а в другой завихренность отсутствует, и движение потенциально. Завихренность оказывается, таким образом, распределенной не по всему объему жидкости, а лишь по его части (вообще говоря, тоже бесконечной).

Возможность существования такой отграниченной области вихревого движения является следствием того, что турбулентное движение может рассматриваться как движение идеальной жидкости, описывающееся уравнениями Эйлера. Мы видели (§ 8), что для движения идеальной жидкости имеет место закон сохранения циркуляции скорости. В частности, если в какой-нибудь точке линии тока ротор скорости равен нулю, то это имеет место и вдоль всей этой линии. Напротив, если в какой-нибудь точке линии тока , то он отличен от нуля вдоль всей линии тока.

Отсюда ясно, что наличие отграниченных областей вихревого и безвихревого движения совместимо с уравнениями движения, если область вихревого движения представляет собой область, за границы которой не выходят находящиеся внутри нее линии тока. Такое распределение завихренности будет устойчивым, и завихренность не будет проникать за поверхность раздела.

Одним из свойств области вихревого турбулентного движения является то, что обмен жидкостью между нею и окружающим пространством может быть только односторонним. Жидкость может втекать в нее из области потенциального движения, но никогда не вытекает из нее.

Подчеркнем, что приведенные здесь соображения не могут, конечно, рассматриваться как сколько-нибудь точное доказательство высказанных утверждений. Однако наличие отграниченных областей вихревого турбулентного движения, по-видимому, подтверждается опытом.

Как в вихревой, так и в безвихревой областях движение турбулентно. Однако характер этой турбулентности совершенно различен в обеих областях. Для выяснения происхождения этого различия обратим внимание на следующее общее свойство потенциального движения, описывающегося уравнением Лапласа . Предположим, что движение периодично в плоскости х, у, так что зависит от х и у посредством множителя вида тогда

и поскольку сумма вторых производных должна быть равна нулю, ясно, что вторая производная по координате z равна умноженному на положительный коэффициент: Но тогда зависимость от z будет определяться затухающим множителем вида при (неограниченное возрастание, как очевидно, невозможно). Таким образом, если потенциальное движение периодично в некоторой плоскости, то оно должно быть затухающим вдоль перпендикулярного к этой плоскости направления. При этом чем больше , т. е. чем меньше период повторяемости движения в плоскости х, у, тем быстрее затухает движение вдоль оси z. Эти рассуждения остаются качественно применимыми и в тех случаях, когда движение не является строго периодическим, а лишь обнаруживает некоторую качественную повторяемость.

Отсюда вытекает следующий результат. Вне области вихревого движения турбулентные пульсации должны затухать, причем тем быстрее, чем меньше их масштаб. Другими словами, мелкомасштабные пульсации не проникают глубоко в область потенциального движения.

В результате заметную роль в этой области играют лишь самые крупномасштабные пульсации, затухающие на расстояниях порядка величины размеров (поперечных) вихревой области, как раз играющих в данном случае роль основного масштаба турбулентности. На расстояниях, больших этих размеров, турбулентность практически отсутствует и движение можно считать ламинарным.

Мы видели, что диссипация энергии при турбулентном движении связана с наиболее мелкомасштабными пульсациями; крупномасштабные движения заметной диссипацией не сопровождаются, с чем и связана возможность применения к ним уравнения Эйлера. Ввиду сказанного выше мы приходим к существенному результату, что диссипация энергии происходит в основном лишь в области вихревого турбулентного движения и практически не имеет места вне этой области.

Имея в виду все эти особенности вихревого и безвихревого турбулентного движений, мы будем в дальнейшем для краткости называть область вихревого турбулентного движения просто областью турбулентного движения или турбулентной областью. В следующих параграфах будет рассмотрена форма этой области для различных случаев.

Турбулентная область должна быть ограничена с какой-нибудь стороны частью поверхности обтекаемого жидкостью тела. Линию, ограничивающую эту часть поверхности тела, называют линией отрыва. От нее отходит поверхность раздела между областью турбулентности и остальным объемом жидкости. Самое образование турбулентной области при обтекании тела называют явлением отрыва.

Форма турбулентной области определяется свойствами движения в основном объеме жидкости (т. е. не в непосредственной близости от поверхности тела). Не существующая пока полная теория турбулентности должна была бы дать принципиальную возможность определения этой формы с помощью уравнений движения идеальной жидкости, если задано положение линии отрыва на поверхности тела. Действительное же положение линии отрыва определяется свойствами движения в непосредственной близости поверхности тела (в так называемом пограничном слое), где существенную роль играет вязкость жидкости (см. § 40).

Говоря (в следующих параграфах) о свободной границе турбулентной области, мы будем подразумевать, естественно, ее усредненное по времени положение. Мгновенное же положение границы представляет собой очень нерегулярную поверхность; эти нерегулярные искажения и их изменение со временем связаны в основном с крупномасштабными пульсациями и соответственно простираются в глубину на расстояния, сравнимые с основным масштабом турбулентности. Нерегулярное движение граничной поверхности приводит к тому, что фиксированная в пространстве точка потока (не слишком удаленная от среднего положения поверхности) будет оказываться попеременно по ту или другую сторону границы.

При наблюдении картины движения в этой точке будут обнаруживаться попеременные периоды наличия или отсутствия мелкомасштабной турбулентности.

1
Оглавление
email@scask.ru