Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 115. Стационарные простые волныОпределим общий вид решений уравнений стационарного плоского сверхзвукового движения газа, описывающих течения, при которых на бесконечности имеется однородный плоско-параллельный поток, в дальнейшем своем течении поворачивающий, обтекая искривленный профиль. С частным случаем такого решения нам уже приходилось иметь дело при изучении движения вблизи угла, — при этом мы по существу рассматривали плоско-параллельный поток, текущий вдоль одной из сторон угла и поворачивающий вокруг края этого угла. В этом частном решении все величины — две компоненты скорости, давление, плотность — были функциями всего лишь от одной переменной — Поскольку на бесконечности имеется однородный поток, в котором все величины, в частности и энтропия s, постоянны; а при стационарном движении идеальной жидкости энтропия сохраняется вдоль линий тока, то ясно, что и во всем пространстве будет Уравнения Эйлера и уравнение непрерывности имеют вид
Написав частные производные в виде якобианов, переписываем эти уравнения в виде
Выберем теперь в качестве независимых переменных
(где
откуда
где Дальнейших вычислений можно не производить вовсе, если непосредственно воспользоваться известным уже нам частным решением для волны разрежения при обтекании угла (§§ 109,112). Напомним, что в этом решении все величины (в том числе и давление) постоянны вдоль каждой прямой (характеристики), проходящей через вершину угла. Это частное решение, очевидно, соответствует случаю, когда в общем выражении (115,1) произвольная функция Уравнение (115,1) при постоянных значениях Изложенные свойства рассматриваемого движения в математическом отношении полностью аналогичны свойствам одномерных простых волн, у которых одно из семейств характеристик представляет собой семейство прямых линий в плоскости Как и в нестационарном случае, одно из важнейших свойств стационарных простых волн заключается в том, что течение во всякой области плоскости Покажем теперь, каким образом может быть построена простая волна для обтекания заданного профиля. На рис. 115 изображен обтекаемый профиль; слева от точки О он прямолинеен, далее от точки О начинается закругление. В сверхзвуковом потоке влияние закругления распространяется, разумеется, лишь на область потока вниз по течению от исходящей из точки О характеристики ОА. Поэтому все течение слева от этой характеристики будет представлять собой однородный поток (относящиеся к нему значения величин отличаем индексом 1). Все характеристики в этой области параллельны друг другу и наклонены к оси х под углом Маха В формулах (109,12-15) угол наклона характеристик
и в дальнейшем отсчитывать углы Согласно формулам
Уравнение же характеристик напишется в виде
Произвольная функция
Рис. 115 Пусть форма профиля задана уравнением
Уравнение прямой, проходящей через точку X, Y и наклоненной под углом
Это уравнение совпадает с (115,6), если в последнем положить
Исходя из заданного уравнения При обтекании выпуклой поверхности угол
Рис. 116 Иначе обстоит дело при обтекании вогнутого профиля. Здесь наклон В § 101 мы имели аналогичное положение для функции
определяющие здесь место начала ударной волны. В математическом отношении это — угловая точка огибающей семейства прямолинейных характеристик (ср. § 103). Что касается области существования простой волны при обтекании вогнутого профиля, то вдоль линий тока, проходящих над точкой О, оно применимо вплоть до места пересечения этих линий с ударной волной. Линии же тока, проходящие под точкой О, с ударной волной вообще не пересекаются. Однако отсюда нельзя сделать заключение о том, что вдоль них рассматриваемое решение применимо везде. Дело в том, что возникающая ударная волна оказывает возмущающее влияние и на газ, текущий вдоль этих линий тока, и таким образом нарушает движение, которое должно было бы иметь место в ее отсутствии. В силу свойства сверхзвукового потока эти возмущения будут, однако, проникать лишь в область газа, находящуюся вниз по течению от характеристики ОА, исходящей из точки начала ударной волны (одна из характеристик второго семейства). Таким образом, рассматриваемое здесь решение будет применимым во всей области слева от линии ЛОВ. Что касается самой линии ОА, то она будет представлять собой слабый разрыв. Мы видим, что непрерывная (без ударных волн) во всей области простая волна сжатия вдоль вогнутой поверхности, аналогичная простой волне разрежения вдоль выпуклой поверхности, невозможна. В ударной волне, возникающей при обтекании вогнутого профиля, мы имеем пример волны, «начинающейся» от некоторой точки, расположенной в самом потоке вдали от твердых стенок. Такая точка «начала» ударной волны обладает некоторыми общими свойствами, которые мы здесь отметим. В самой точке начала интенсивность ударной волны обращается в нуль, а вблизи нее мала. Но в ударной волне слабой интенсивности скачок энтропии и ротора скорости — величины третьего порядка малости, и потому изменение течения при прохождении через волну отличается от непрерывного потенциального изэнтропического изменения лишь в величинах третьего порядка. Отсюда следует, что в отходящих от точки начала ударной волны слабых разрывах должны испытывать скачок лишь производные третьего порядка от различных величин. Таких разрывов будет, вообще говоря, два: слабый разрыв, совпадающий с характеристикой, и тангенциальный слабый разрыв, соападающий с линией тока (см. конец § 96).
|
1 |
Оглавление
|