Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 54. Теплопередача в пограничном слоеРаспределение температуры в жидкости при очень больших числах Рейнольдса обнаруживает особенности, аналогичные тем, которыми обладает и само распределение скоростей. Очень большие значения R эквивалентны очень малой вязкости. Но поскольку число Такое рассмотрение, однако, опять будет неприменимо в пристеночном слое жидкости, поскольку при нем не будут выполняться на поверхности тела ни граничное условие прилипания, ни условие одинаковости температур жидкости и тела. В результате в пограничном слое происходит наряду с быстрым падением скорости также и быстрое изменение температуры жидкости до значения, равного температуре поверхности твердого тела. Пограничный слой характеризуется наличием в нем больших градиентов как скорости, так и температуры. Что касается распределения температуры в основном объеме жидкости, то легко видеть, что при обтекании нагретого тела (при больших R) нагревание жидкости будет происходить практически только в области следа, между тем как вне следа температура жидкости не изменится. Действительно, при очень больших R процессы теплопроводности в основном потоке не играют практически никакой роли. Поэтому температура изменится только в тех местах пространства, в которые попадает при своем движении нагретая в пограничном слое жидкость. Но мы знаем (см. § 35), что из пограничного слоя линии тока выходят в область основного потока только за линией отрыва, где они попадают в область турбулентного следа. Из области же следа линии тока в окружающее пространство уже не выходят. Таким образом, текущая мимо поверхности нагретого тела в пограничном слое жидкость попадает целиком в область следа, в котором и остается. Мы видим, что тепло оказывается распределенным в тех же областях, в которых имеется отличная от нуля завихренность. Внутри самой турбулентной области происходит интенсивный теплообмен, обусловленный сильным перемешиванием жидкости, которое характерно для всякого турбулентного движения. Такой механизм теплопередачи можно назвать турбулентной температуропроводностью и характеризовать соответствующим коэффициентом Хтурб, подобно тому как мы ввели понятие о коэффициенте турбулентной вязкости
Таким образом, процессы теплопередачи в ламинарном и турбулентном потоках являются принципиально различными. В предельном случае сколь угодно малых вязкости и теплопроводности в ламинарном потоке процессы теплопередачи вообще отсутствуют и температура жидкости в каждом месте пространства не меняется. Напротив, в турбулентно движущейся жидкости в том же предельном случае теплопередача происходит и приводит к быстрому выравниванию температуры в различных участках потока. Рассмотрим сначала теплопередачу в ламинарном пограничном слое. Уравнения движения (39,13) сохраняют свой вид. Аналогичное упрощение должно быть произведено теперь и для уравнения (53,2). Написанное в раскрытом виде это уравнение имеет вид (все величины не зависят от координаты
В правой его части можно пренебречь производной
Из сравнения этого уравнения с первым из уравнений (39,13) ясно, что если число Прандтля — порядка единицы, то порядок величины
Поэтому мы приходим к результату, что
Отсюда, в частности, следует, что коэффициент теплопередачи а обратно пропорционален корню из размеров l тела. Перейдем теперь к теплопередаче в турбулентном пограничном слое. При этом удобно, как и в § 42, рассмотреть бесконечный плоскопараллельный турбулентный поток, текущий вдоль бесконечной плоской поверхности. Поперечный градиент температуры Что касается коэффициентов вязкости и теплопроводности, то они при достаточно больших R не могут входить в В силу упоминавшейся уже в § 53 однородности уравнений по температуре можно изменить температуру в любое число раз без того, чтобы нарушить уравнения. Но при изменении температуры должен во столько же раз измениться и поток тепла. Поэтому q и Т должны быть пропорциональны друг другу. Но из
где
Таким образом, температура, как и скорость, распределена по логарифмическому закону. Входящая сюда постоянная интегрирования с, как и при выводе (42,7), должна быть определена из условий в вязком подслое. Полная разность между температурой жидкости в данной точке и температурой стенки (которую мы принимаем условно за нуль) складывается из падения температуры в турбулентном слое и ее падения в вязком подслое. Логарифмическим законом (54,3) определяется только первое из них. Поэтому, если написать (54,3) в виде
введя под знаком логарифма множителем толщину Таким образом, получаем закон распределения температуры в виде
(Л. Д. Ландау, 1944). Эмпирическое значение постоянной С помощью формулы (54,4) можно рассчитать теплопередачу при турбулентном течении по трубе, при обтекании плоской пластинки и т. п. Мы не станем останавливаться здесь на этом. Турбулентные пульсации температурыГоворя выше о температуре турбулентной жидкости, мы подразумевали, конечно, ее усредненное по времени значение. Истинная же температура испытывает в каждой точке пространства крайне нерегулярное изменение со временем, подобное пульсациям скорости. Будем считать, что существенное изменение средней температуры происходит на тех же расстояниях l (основной масштаб турбулентности), на которых меняется средняя скорость движения. К мелкомасштабным (масштабы Я <С Теплопроводностная диссипация энергии (в единице объема) дается выражением Следуя изложенному в § 33 способу (см. текст после (33,1)), выражаем
Подставив сюда
(согласно (33,2) и (33,6)), получим искомый результат:
Таким образом, для На расстояниях же
|
1 |
Оглавление
|