Главная > Теоретическая физика. Т. VI. Гидродинамика
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

§ 134. Релятивистские гидродинамические уравнения

Уравнения движения содержатся, как известно, в уравнениях

(134,1)

выражающих собой законы сохранения энергии и импульса той физической системы, к которой относится тензор Воспользовавшись выражением (133,2) для мы получим отсюда уравнения движения жидкости; при этом, однако, необходимо дополнительно учесть сохранение числа частиц, не содержащееся в уравнениях (134,1). Подчеркнем, что тензор энергии-импульса (133,2) не учитывает никаких диссипативных процессов (в том числе вязкости и теплопроводности); поэтому речь идет об уравнениях движения идеальной жидкости.

Для формулирования уравнения, выражающего сохранение числа частиц в жидкости (уравнения непрерывности), введем -вектор тока частиц Его временная компонента есть плотность числа частиц, а пространственные компоненты составляют трехмерный вектор тока частиц. Очевидно, что -вектор должен быть пропорционален -скорости , т. е. иметь вид

(134,2)

где — скаляр; из его определения ясно, что — собственная плотность числа частиц.

Уравнение непрерывности выражается просто равенством нулю 4-дивергенции вектора тока:

Возвратимся к уравнениям (134,1). Дифференцируя выражение (133,2), получим

Умножим это уравнение на , т. е. спроецируем его на направление 4-скорости. Помня, что а потому находим

Заменив тождественно и воспользовавшись уравнением непрерывности (134,3), переписываем это уравнение в виде

Согласно известному термодинамическому соотношению для тепловой функции имеем

(134,6)

(Т — температура, а — энтропия, отнесенная к единице собственного объема). Отсюда видно, что выражение в квадратных скобках есть производная

Опустив множитель приходим, таким образом, к уравнению

(134,7)

выражающему адиабатичность движения жидкости означает дифференцирование вдоль мировой линии движения данного элемента жидкости). С помощью уравнения непрерывности (134,3) его можно представить в эквивалентном виде

(134,8)

т. е. как равенство нулю 4-дивергенции потока энтропии .

Спроецируем теперь уравнение (134,1) на направление, нормальное к . Другими словами, составим их комбинацию

(выражение в левой стороне тождественно обращается в ноль при скалярном умножении на ). Простое вычисление приводит к уравнению

Три пространственные компоненты этого уравнения представляют собой релятивистское обобщение уравнения Эйлера (временная же компонента есть следствие первых трех).

Уравнение (134,9) может быть представлено в другом виде в случае изэнтропического движения (подобно преобразованию от (2,3) к (2,9) для нерелятивистского уравнения Эйлера). При имеем, согласно (134,6),

и уравнение (134,9) принимает вид

(134,10)

Если движение к тому же еще и стационарно (все величины не зависят от времени), то пространственные компоненты (134.10) дают

(134,10)

Умножив это уравнение скалярно на v, после простых преобразований получим Отсюда следует, что вдоль каждой из линий тока постоянна величина

(134,11)

Это — релятивистское обобщение уравнения Бернулли.

Не предполагая изэнтропическое течение стационарным, легко видеть, что уравнения (134,10) имеют решения вида

где — функция координат и времени; эти решения — релятивистский аналог потенциальных течений нерелятивистской гидродинамики (И. М. Халатников, 1954). Для проверки сказанного замечаем, что в виду симметрии производных по индексам , имеем

умножив это равенство скалярно на и раскрыв производную в правой стороне, действительно вернемся к уравнению (134,10). Пространственные и временная компоненты равенства (134,12) дают:

Первое из них в нерелятивистском пределе дает обычное условие потенциальности, а второе — уравнение (9,3) (с соответствующим переобозначением ).

Рассмотрим распространение звука в среде с релятивистским уравнением состояния (т. е. в котором давление сравнимо с плотностью внутренней энергии, включающей в себя энергию покоя). Гидродинамические уравнения звуковых волн могут быть линеаризованы; при этом удобнее исходить непосредственно из записи уравнений движения в исходном виде (134,1), а не из эквивалентных им уравнений (134,8-9). Подставив выражения (133,3) компонент тензора энергии-импульса и сохранив везде лишь величины первого порядка малости по амплитуде волны, получим систему уравнений

(134,13)

где штрихом отмечены переменные части величин в волне.

Исключив отсюда v, найдем:

Наконец, написав получим для волновое уравнение со скоростью звука

(индекс «ад» указывает, что производная должна быть взята для адиабатического процесса, т. е. при постоянном ). Эта формула отличается от соответствующего нерелятивистского выражения тем, что вместо обычной плотности массы здесь стоит Для ультра релятивистского уравнения состояния скорость звука .

Наконец, скажем несколько слов о гидродинамических уравнениях при наличии существенных гравитационных полей, т. е. в общей теории относительности. Они получаются из уравнений (134,8-9) просто путем замены обычных производных ковариантными

(134,15)

Выведем из этих уравнений условие механического равновесия в гравитационном поле. При равновесии гравитационное поле статично; можно выбрать такую систему отсчета, в которой вещество неподвижно все величины не зависят от времени, а смешанные компоненты метрического тензора равны нулю Пространственные компоненты уравнения (134,15) дают тогда

или

(134,16)

Это и есть искомое уравнение равновесия. В нерелятивистском предельном случае ( — ньютоновский гравитационный потенциал), и уравнение (134,16) переходит в

т. е. в обычное гидростатическое уравнение.

1
Оглавление
email@scask.ru