Главная > Теоретическая физика. Т. VI. Гидродинамика
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

§ 103. Характеристики

Данное в § 82 определение характеристик как линий, вдоль которых распространяются (в приближении геометрической акустики) малые возмущения, имеет общее значение, и не ограничено применением к плоскому стационарному сверхзвуковому течению, о котором шла речь в § 82.

Для одномерного нестационарного движения можно ввести характеристики как линии в плоскости угловой коэффициент которых равен скорости распространения малых возмущений относительно неподвижной системы координат. Возмущения, распространяющиеся относительно газа со скоростью звука в положительном или отрицательном направлении оси перемещаются относительно неподвижной системы со скоростью с или . Соответственно дифференциальные уравнения двух семейств характеристик, которые мы будем условно называть характеристиками гласят:

Возмущения же, переносящиеся вместе с веществом газа, «распространяются» в плоскости по характеристикам третьего семейства , для которых

(103,2)

Это — просто «линии тока» в плоскости х, t (ср. конец § 82). Подчеркнем, что для существования характеристик здесь отнюдь не требуется, чтобы движение газа было сверхзвуковым. Выражаемая характеристиками направленность распространения возмущений соответствует здесь просто причинной связи движения в последующие моменты времени с предыдущим движением.

В качестве примера рассмотрим характеристики простой волны. Для волны, распространяющейся в положительном направлении оси имеем согласно (101,5) . Дифференцируя это соотношение, имеем:

С другой стороны, вдоль характеристики имеем сравнивая оба равенства, найдем, что вдоль характеристики Выражение в квадратных скобках не может быть равно нулю тождественно. Поэтому должно быть . Таким образом, мы приходим к выводу, что вдоль каждой из характеристик остается постоянной скорость, а с нею и все остальные величины (в волне, распространяющейся влево, таким же свойством обладают характеристики ). Мы увидим в следующем параграфе, что это обстоятельство не случайно, а органически связано с математической природой простых волн.

Из этого свойства характеристик простой волны можно в свою очередь заключить, что они представляют собой семейство прямых линий в плоскости скорость имеет постоянные значения вдоль прямых . В частности, в автомодельной волне разрежения (простая волна с эти прямые образуют пучок с общей точкой пересечения — началом координат плоскости Ввиду этого свойства автомодельную простую волну называют центрированной.

На рис. 86 изображено семейство характеристик для простой волны разрежения, образующейся при ускоренном выдвигании поршня из трубы. Это есть семейство расходящихся прямых, начинающихся на кривой изображающей движение поршня. Справа от характеристики простирается область покоящегося газа, в которой все характеристики параллельны друг другу.

На рис. 87 дан аналогичный чертеж для простой волны сжатия, образующейся при ускоренном вдвигании поршня в трубу. В этом случае характеристики представляют собой сходящийся пучок прямых, которые в конце концов должны пересечься друг с другом. Поскольку каждая характеристика несет свое постоянное значение и, их пересечение друг с другом означает физически бессмысленную многозначность функции v(x, t). Это — геометрическая интерпретация результата о невозможности неограниченного существования простой волны сжатия и неизбежности возникновения в ней ударной волны, к которому мы пришли уже аналогичным путем в § 101.

Рис. 86

Рис. 87

Геометрическое же истолкование условий (101,12), определяющих время и место образования ударной волны, заключается в следующем. Пересекающееся семейство прямолинейных характеристик имеет огибающую, заканчивающуюся со стороны малых t угловой точкой, которая и определяет первый момент возникновения многозначности. Если уравнения характеристик заданы в параметрическом виде , то положение угловой точки как раз и определяется уравнениями (101,12).

Покажем теперь коротко, каким образом данное нами физическое определение характеристик как линий распространения возмущений соответствует известному из теории дифференциальных уравнений в частных производных чисто математическому аспекту этого понятия.

Рассмотрим уравнение в частных производных вида

линейное по вторым производным (коэффициенты же А, В, С, D могут быть любыми функциями как от независимых переменных так и от неизвестной функции и ее первых производных). Уравнение (103,3) относится к эллиптическому типу, если везде и к гиперболическому, если . В последнем случае уравнение

(103,4)

или

(103,5)

определяет в плоскости x, t два семейства кривых — характеристик (для заданного решения ) уравнения Укажем, что если коэффициенты А, В, С в уравнении являются функциями только от х, t, то характеристики не зависят от конкретного решения уравнения.

Пусть данное течение описывается некоторым решением уравнения (103,3), и наложим на него малое возмущение Это возмущение предполагаем удовлетворяющим условиям, соответствующим геометрической акустике: оно слабо меняет движение мало вместе со своими первыми производными), но сильно меняется на протяжении малых расстояний (вторые производные от относительно велики). Полагая в уравнении получим тогда для уравнение

причем в коэффициентах А, В, С положено Следуя методу, принятому для перехода от волновой к геометрической оптике, пишем в виде где функция (эйконал) — большая величина, и получаем для последней уравнение

Уравнение распространения лучей в геометрической акустике получается приравниванием групповой скорости:

где

Дифференцируя соотношение

получим:

а исключая отсюда с помощью того же соотношения мы снова придем к уравнению (103,5).

Задача

Найти уравнение второго семейства характеристик в центрированной простой волне в политропном газе.

Решение. В центрированной простой волне, распространяющейся в сторону находящегося справа от нее неподвижного газа, имеем:

Характеристики изображаются пучком прямых х = const t. Характеристики же С - определяются уравнением

Интегрируя, находим:

где постоянная интегрирования выбрана так, чтобы характеристика проходила через точку на характеристике граничной между простой волной и областью покоя.

«Линии тока» в плоскости даются уравнением

откуда для характеристик :

1
Оглавление
email@scask.ru