Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике Глава III. ЛОГАРИФМЫ§ 1. Логарифмы по произвольному основанию26. Определение и свойства логарифмов.В соотношении
может быть поставлена задача отыскания любого из трех чисел по двум другим, заданным. Если даны а и то N находят действием возведения в степень. Если даны N и то а находят извлечением корня степени х (или возведением в степень ). Теперь рассмотрим случай, когда по заданным а и N требуется найти х. Пусть число N положительно: число а положительно и не равно единице: . Определение. Логарифмом числа N по основанию а называется показатель степени, в которую нужно возвести а, чтобы получить число N; логарифм обозначается через
Таким образом, в равенстве (26.1) показатель степени находят как логарифм N по основанию а. Записи
имеют одинаковый смысл. Равенство (26.1) иногда называют основным тождеством теории логарифмов; в действительности оно выражает определение понятия логарифма. По данному определению основание логарифма а всегда положительно и отлично от единицы; логарифмируемое число N положительно. Отрицательные числа и нуль логарифмов не имеют. Можно доказать, что всякое число при данном основании имеет вполне определенный логарифм. Поэтому равенство влечет за собой . Заметим, что здесь существенно условие в противном случае вывод был бы не обоснован, так как равенство верно при любых значениях х и у. Пример 1. Найти Решение. Для получения числа следует возвести основание 2 в степень Поэтому. Можно проводить записи при решении таких примеров в следующей форме:
Пример 2. Найти . Решение. Имеем
В примерах 1 и 2 мы легко находили искомый логарифм, представляя логарифмируемое число как степень основания с рациональным показателем. В общем случае, например для и т. д., этого сделать не удастся, так как логарифм имеет иррациональное значение. Обратим внимание на один связанный с этим утверждением вопрос. В п. 12 мы дали понятие о возможности определения любой действительной степени данного положительного числа. Это было необходимо для введения логарифмов, которые, вообще говоря, могут быть иррациональными числами. Рассмотрим некоторые свойства логарифмов. Свойство 1. Если число и основание равны, то логарифм равен единице, и, обратно, если логарифм равен единице, то число и основание равны. Доказательство. Пусть По определению логарифма имеем а откуда
Обратно, пусть Тогда по определению Свойство 2. Логарифм единицы по любому основанию равен нулю. Доказательство. По определению логарифма (нулевая степень любого положительного основания равна единице, см. (10.1)). Отсюда
что и требовалось доказать. Верно и обратное утверждение: если , то N = 1. Действительно, имеем . Прежде чем сформулировать следующее свойство логарифмов, условимся говорить, что два числа а и b лежат по одну сторону от третьего числа с, если они оба либо больше с, либо меньше с. Если одно из этих чисел больше с, а другое меньше с, то будем говорить, что они лежат по разные стороны от с. Свойство 3. Если число и основание лежат по одну сторону от единицы, то логарифм положителен; если число и основание лежат по разные стороны от единицы, то логарифм отрицателен. Доказательство свойства 3 основано на том, что степень а больше единицы, если основание больше единицы и показатель положителен или основание меньше единицы и показатель отрицателен. Степень меньше единицы, если основание больше единицы и показатель отрицателен или основание меньше единицы и показатель положителен. Требуется рассмотреть четыре случая:
Ограничимся разбором первого из них, остальные читатель рассмотрит самостоятельно. Пусть тогда в равенстве показатель степени не может быть ни отрицательным, ни равным нулю, следовательно, он положителен, т. е. что и требовалось доказать. Пример 3. Выяснить, какие из указанных ниже логарифмов положительны, какие отрицательны: Решение, а) так как число 15 и основание 12 расположены по одну сторону от единицы; б) , так как 1000 и 2 расположены по одну сторону от единицы; при этом несущественно, что основание больше логарифмируемого числа; в) , так как 3,1 и 0,8 лежат по разные стороны от единицы; г) ; почему? д) ; почему? Следующие свойства 4—6 часто называют правилами логарифмирования: они позволяют, зная логарифмы некоторых чисел, найти логарифмы их произведения, частного, степени каждого из них. Свойство 4 (правило логарифмирования произведения). Логарифм произведения нескольких положительных чисел по данному основанию равен сумме логарифмов этих чисел по тому же основанию. Доказательство. Пусть даны положительные числа . Для логарифма их произведения напишем определяющее логарифм равенство (26.1):
Отсюда найдем
Сравнив показатели степени первого и последнего выражений, получим требуемое равенство:
Заметим, что условие существенно; логарифм произведения двух отрицательных чисел имеет смысл, но в этом случае получим
В общем случае, если произведение нескольких сомножителей положительно, то его логарифм равен сумме логарифмов модулей этих сомножителей. Свойство 5 (правило логарифмирования частного). Логарифм частного положительных чисел равен разности логарифмов делимого и делителя, взятых по тому же основанию. Доказательство. Последовательно находим
откуда
что и требовалось доказать. Свойство 6 (правило логарифмирования степени). Логарифм степени какого-либо положительного числа равен логарифму этого числа, умноженному на показатель степени. Доказательство. Запишем снова основное тождество (26.1) для числа :
отсюда
что и требовалось доказать. Следствие. Логарифм корня из положительного числа равен логарифму подкоренного числа, деленному на показатель корня:
Доказать справедливость этого следствия можно, представив как и воспользовавшись свойством 6. Пример 4. Прологарифмировать по основанию а: а) (предполагается, что все величины b, с, d, е положительны); б) (преполагается, что ). Решение, а) Удобно перейти в данном выражении к дробным степеням:
На основании равенств (26.5)-(26.7) теперь можно записать:
б) Имеем
Мы замечаем, что над логарифмами чисел производятся действия более простые, чем над самими числами: при умножении чисел их логарифмы складываются, при делении — вычитаются и т.д. Именно поэтому логарифмы получили применение в вычислительной практике (см. п. 29). Действие, обратное логарифмированию, называется потенцированием, а именно: потенцированием называется действие, с помощью которого по данному логарифму числа находится само это число. По существу потенцирование не является каким-либо особым действием: оно сводится к возведению основания в степень (равную логарифму числа). Термин «потенцирование» можно считать синонимом термина «возведенение в степень». При потенцировании надо пользоваться правилами, обратными по отношению к правилам логарифмирования: сумму логарифмов заменить логарифмом произведения, разность логарифмов — логарифмом частного и т. д. В частности, если перед знаком логарифма находится какой-либо множитель, то его при потенцировании нужно переносить в показатель степени под знак логарифма. Пример 5. Найти N, если известно, что
Решение. В связи с только что высказанным правилом потенцирования множители 2/3 и 1/3, стоящие перед знаками логарифмов в правой части данного равенства, перенесем в показатели степени под знаками этих логарифмов; получим
Теперь разность логарифмов заменим логарифмом частного:
отсюда
для получения последней дроби в этой цепочке равенств мы предыдущую дробь освободили от иррациональности в знаменателе (п. 25). Свойство 7. Если основание больше единицы, то большее число имеет больший логарифм (а меньшее - меньший), если основание меньше единицы, то большее число имеет меньший логарифм {а меньшее — больший). Это свойство формулируют также и как правило логарифмирования неравенств, обе части которых положительны: При логарифмировании неравенств по основанию, большему единицы, знак неравенства сохраняется, а при логарифмировании по основанию, меньшему единицы, знак неравенства меняется на противоположный (см. также п. 80). Доказательство основано на свойствах 5 и 3. Рассмотрим случай, когда Если , то и, логарифмируя, получим
(а и N/М лежат по одну сторону от единицы). Отсюда
Случай а < 1, в котором из следует , читатель разберет самостоятельно.
|
1 |
Оглавление
|