Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
ГЛАВА II. ДЕЙСТВИТЕЛЬНЫЕ (ВЕЩЕСТВЕННЫЕ) ЧИСЛАМатематические теории, как правило, находят свой выход в том, что позволяют перерабатывать один набор чисел (исходные данные) в другой набор чисел, составляющий промежуточную или окончательную цель вычислений. По этой причине особое место в математике и ее приложениях занимают числовые функции. Они (точнее, так называемые дифференцируемые числовые функции) составляют главный объект исследования классического анализа. Но сколь-нибудь полное с точки зрения современной математики описание свойств этих функций, как вы уже могли почувствовать в школе и в чем вскоре убедитесь, невозможно без точного определения множества вещественных чисел, на котором эти функции действуют. Число в математике, как время в физике, известно каждому, но непонятно лишь специалистам. Это одна из основных математических абстракций, которой, по-видимому, еще предстоит существенная эволюция и рассказу о которой может быть посвящен самостоятельный насыщенный курс. Здесь же мы имеем в виду только свести воедино то, что читателю в основном известно о действительных числах из средней школы, выделив в виде аксиом фундаментальные и независимые свойства чисел. При этом наша цель состоит в том, чтобы дать точное, пригодное для последующего математического использования определение вещественных чисел и обратить особое внимание на их свойство полноты, или непрерывности, являющееся зародышем предельного перехода — основной неарифметической операции анализа. § 1. Аксиоматика и некоторые общие свойства множества действительных чисел1. Определение множества действительных чиселОпределение 1. Множество Е называется множеством действительных (вещественных) чисел, а его элементы — действительными (вещественными) числами, если выполнен следующий комплекс условий, называемый аксиоматикой вещественных чисел: (I) Аксиомы сложенияОпределено отображение (операция сложения)
сопоставляющее каждой упорядоченной паре
Если на каком-то множестве (II) Аксиомы умноженияОпределено отображение (операция умножения)
сопоставляющее каждой упорядоченной паре 1. Существует нейтральный элемент
2. Для любого элемента
3. Операция
4. Операция
Заметим, что по отношению к операции умножения множество (I, II) Связь сложения и умноженияУмножение дистрибутивно по отношению к сложению, т. е.
Отметим, что ввиду коммутативности умножения последнее равенство сохранится, если в обеих его частях поменять порядок множителей. Если на каком-то множестве (III) Аксиомы порядкаМежду элементами Е имеется отношение
Отношение Множество, между некоторыми элементами которого имеется отношение, удовлетворяющее аксиомам 0, 1, 2, как известно, называют частично упорядоченным, а если, сверх того, выполнена аксиома 3, т. е. любые два элемента множества сравнимы, то множество называется линейно упорядоченным. Таким образом, множество действительных чисел линейно упорядочено отношением неравенства между его элементами. (I, III) Связь сложения и порядка в RЕсли х,
(II, III) Связь умножения и порядка в RЕсли
(IV) Аксиома полноты (непрерывности)Если X и Y — непустые подмножества Е, обладающие тем свойством, что для любых элементов Этим завершается список аксиом, выполнение которых на каком бы то ни было множестве Е позволяет считать это множество конкретной реализацией или, как говорят, моделью действительных чисел. Это определение формально не предполагает никакой предварительной информации о числах, и из него, «включив математическую мысль», опять-таки формально мы должны получить уже в качестве теорем остальные свойства действительных чисел. По поводу этого аксиоматического формализма хотелось бы сделать несколько неформальных замечаний. Представьте себе, что вы не прошли стадию от складывания яблок, кубиков или других именованных величин к сложению абстрактных натуральных чисел; что вы не занимались измерением отрезков и не пришли к рациональным числам; что вам неизвестно великое открытие древних о том, что диагональ квадрата несоизмерима с его стороной и потому ее длина не может быть рациональным числом, т. е. нужны иррациональные числа; что у вас нет возникающего в процессе измерений понятия «больше» Относительно любой абстрактной системы аксиом сразу же возникают по крайней мере два вопроса. Во-первых, совместимы ли эти аксиомы, т. е. существует лимножество, удовлетворяющее всем перечисленным условиям. Это вопрос о непротиворечивости аксиоматики. Во-вторых, однозначно ли данная система аксиом определяет математический объект, т. е., как сказали бы логики, категорична ли система аксиом. Однозначность здесь надо понимать следующим образом. Если лица А и В, независимо, построили свои модели, к примеру, числовых систем
С математической точки зрения Мы не будем здесь обсуждать поставленные выше вопросы и ограничимся только информативными ответами на них. Положительный ответ на вопрос о непротиворечивости аксиоматики всегда носит условный характер. В отношении чисел он выглядит так: исходя из принятой нами аксиоматики теории множеств (см. гл. I, § 4, п. 2), можно построить множество натуральных, затем множество рациональных и, наконец, множество Е всех действительных чисел, удовлетворяющее всем перечисленным свойствам. Вопрос о категоричности системы аксиом действительных чисел имеет положительный ответ. Желающие получат его самостоятельно, решив задачи 23, 24, помещенные в конце следующего параграфа.
|
1 |
Оглавление
|