Главная > Математический анализ. Часть I. (Зорич В.А.)
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

3. Радиоактивный распад, цепная реакция и атомный котел.

Известно, что ядра тяжелых элементов подвержены самопроизвольному (спонтанному) распаду. Это так называемая естественная радиоактивность.

Основной статистический закон радиоактивности (справедливый, следовательно, для не слишком малых количеств и концентраций вещества) состоит в том, что количество распадов за малый промежуток времени , прошедший от момента пропорционально и количеству не распавшихся к моменту t атомов вещества, т. е.

где — числовой коэффициент, характерный для данного химического элемента.

Таким образом, функция удовлетворяет уже знакомому дифференциальному уравнению

из которого следует, что

где начальное количество атомов вещества.

Время Т, за которое происходит распад половины из начального количества атомов, называют периодом полураспада. Величина Т находится, таким образом, из уравнения , т. е.

Например, для полония суток, для радия лет, для урана лет, а для его изотопа лет.

Ядерная реакция — это взаимодействие ядер или взаимодействие ядра с элементарными частицами, в результате которого появляются ядра нового типа. Это может быть ядерный синтез, когда слияние ядер более легких элементов приводит к образованию ядер более тяжелого элемента (например, два ядра тяжелого водорода дают, с потерей массы и выделением энергии, ядро гелия); это может быть распад ядра и образование ядра (ядер) более легких элементов. В частности, такой распад происходит примерно в половине случаев столкновения нейтрона с ядром урана При делении ядра урана образуется 2—3 новых нейтрона, которые могут участвовать в дальнейшем взаимодействии с ядрами, вызывая их деление и тем самым размножение нейтронов. Ядерная реакция такого типа называется цепной реакцией.

Опишем принципиальную математическую модель цепной реакции в некотором радиоактивном веществе и получим закон изменения количества нейтронов в зависимости от времени.

Возьмем вещество в виде шара радиуса Бели не слишком мало, то за малый промежуток времени , отсчитываемый от момента с одной стороны, произойдет рождение новых нейтронов в количестве, пропорциональном с другой — потеря части нейтронов за счет их выхода за пределы шара.

Если — скорость нейтрона, то за время покинуть шар могут только те из них, которые удалены от границы не более чем на расстояние , да и то если их скорость направлена примерно по радиусу. Считая, что такие нейтроны составляют неизменную долю от попавших в рассматриваемую зону и что нейтроны в шаре распределены примерно равномерно, можно сказать, что количество теряемых за время нейтронов пропорционально и отношению объема указанной приграничной области к объему шара.

Сказанное приводит к равенству

(ибо объем рассматриваемой зоны равен примерно объем шара Коэффициенты а и (3 зависят только от рассматриваемого радиоактивного вещества.

Из соотношения (11) после деления на и перехода к пределу при получаем

откуда

Из полученной формулы видно, что при количество нейтронов будет экспоненциально во времени расти. Характер этого роста, независимо от начального условия таков, что за очень короткое время происходит практически полный распад вещества с выделением колоссальной энергии — это и есть взрыв.

Если то очень скоро реакция прекращается ввиду того, что теряется больше нейтронов, чем рождается.

Если же выполнено пограничное между рассмотренными случаями условие а то устанавливается равновесие между рождением нейтронов и их выходом из реакции, в результате чего их количество остается примерно постоянным.

Величина при которой называется критическим радиусом, а масса вещества в шаре такого объема называется критической массой вещества.

Для урана критический радиус равен примерно 8,5 см, а критическая масса около 50 кг.

В котлах, где подогрев пара происходит за счет цепной реакции в радиоактивном веществе, имеется искусственный источник нейтронов, который доставляет в делящуюся массу определенное количество нейтронов в единицу времени. Таким образом, для атомного реактора уравнение (12) немного видоизменяется:

Это уравнение решается тем же приемом, что и уравнение (12), ибо от функции если Следовательно, решение уравнения (13) имеет вид

Из этого решения видно, что если (сверхкритическая масса), то произойдет взрыв. Если же масса докритическая, т. е. то очень скоро будем иметь

Таким образом, если поддерживать массу радиоактивного вещества в докритическом состоянии, но близком к критическому, то независимо от мощности дополнительного источника нейтронов, т. е. независимо от величины можно получить большие значения значит, и большую мощность реактора. Удерживание процесса в прикритической зоне — дело деликатное и осуществляется довольно сложной системой автоматического регулирования.

1
Оглавление
email@scask.ru