Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
ГЛАВА V. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ§ 1. Дифференцируемая функция1. Задача и наводящие соображения. Предположим, что, следуя Ньютону, мы хотим решить кеплерову задачу двух тел, т. е. хотим объяснить закон движения одного небесного тела
Рис. 13 Движением
связывающий вектор силы с вектором вызванного ею ускорения через коэффициент пропорциональности тел
где Зная массы Чтобы получить теперь соотношения на Ускорение есть характеристика изменения скорости Итак, мы хотим определить и научиться вычислять ту мгновенную скорость тела, которую подразумевает закон движения (1). Измерить — значит сравнить с эталоном. Что же в нашем случае может служить эталоном для определения мгновенной скорости движения? Наиболее простым видом движения является такое, которое совершает по инерции свободное тело. Это движение, при котором за равные промежутки времени происходят равные (как векторы) перемещения тела в пространстве. Это так называемое равномерное (прямолинейное) движение. Бели точка движется равномерно,
где Мы знаем, таким образом, скорость Однако такое определение мгновенной скорости оставалось бы чистой абстракцией, не дающей никаких рекомендаций для конкретного вычисления этой величины, если бы не следующее обстоятельство первостепенной важности, которое мы сейчас обсудим. Оставаясь в рамках того (как сказали бы логики, «порочного») круга, в который мы вошли, написав уравнение движения (1), а затем принявшись выяснять, что такое мгновенная скорость и ускорение, мы все же заметим, что при самом общем представлении об этих понятиях из уравнения (1) можно сделать следующие эвристические выводы. Если силы отсутствуют, т. е. Из того же уравнения (1) видно, что ограниченные по величине силы способны создать только ограниченные по величине ускорения. Но если на отрезке времени В частности, скорость Если бы мы сфотографировали траекторию тела
Рис. 14 Представленный на фотографии с участок траектории соответствует столь малому интервалу времени, что на нем уже трудно отличить истинную траекторию от прямолинейной, так как она и в самом деле на этом участке похожа на прямолинейную, а движение — на равномерное прямолинейное. Из этого наблюдения, кстати, можно заключить, что, решив задачу об определении мгновенной скорости (а скорость — векторная величина), мы одновременно решим и чисто геометрический вопрос об определении и нахождении касательной к кривой (кривой в данном случае служит траектория движения). Итак, мы заметили, что в нашей задаче должно быть
при
где
которое не исключает также случая Таким образом, от самых общих и, быть может, расплывчатых представлений о скорости мы пришли к соотношению (5), которому скорость должна удовлетворять. Но из (5) величина
поэтому как само фундаментальное соотношение (5), так и равносильное ему соотношение (6) можно теперь принять за определения величины Мы не станем сейчас отвлекаться на подробное обсуждение вопроса о пределе векторнозначной функции и ограничимся сведением его к уже рассмотренному во всех подробностях случало предела вещественнозначной функции. Поскольку вектор близки, если их координаты близки, то предел в (6) следует понимать так:
Наконец, заметим, что если
задает прямую, которая в силу указанных выше обстоятельств должна быть признана касательной к траектории в точке Итак, эталоном для определения скорости движения служит скорость равномерного прямолинейного движения, задаваемого линейным соотношением (7). Эталонное движение (7) подгоняется к исследуемому так, как этого требует соотношение (5). То значение Если
откуда для нашего движения в поле тяжести получаем в координатном
Это точная математическая запись нашей исходной задачи. Поскольку мы знаем, как по Операция отыскания скорости изменения векторной величины, как было показано, сводится к отысканию скорости изменения нескольких числовых функций — координат вектора. Таким образом эту операцию следует прежде всего научиться свободно выполнять в простейшем случае вещественнозначных функций вещественного аргумента, чем мы теперь и займемся.
|
1 |
Оглавление
|