Главная > Математический анализ. Часть I. (Зорич В.А.)
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

ИЗ ПРЕДИСЛОВИЯ К ПЕРВОМУ ИЗДАНИЮ

Создание Ньютоном и Лейбницем три столетия тому назад основ дифференциального и интегрального исчисления даже по нынешним масштабам представляется крупнейшим событием в истории науки вообще и математики в особенности.

Математический анализ (в широком смысле слова) и алгебра, переплетаясь, образовали теперь ту корневую систему, на которой держится разветвленное дерево современной математики и через которую происходит его основной живительный контакт с внематематической сферой. Именно по этой причине основы анализа включаются как необходимый элемент даже самых скромных представлений о так называемой высшей математике, и, вероятно, поэтому изложению основ анализа посвящено большое количество книг, адресованных различным кругам читателей.

Эта книга в первую очередь адресована математикам, желающим (как и должно) получить полноценные в логическом отношении доказательства фундаментальных теорем, но вместе с тем интересующимся также их внематематической жизнью.

Особенности настоящего курса, связанные с указанными обстоятельствами, сводятся в основном к следующему.

По характеру изложения. В пределах каждой большой темы изложение, как правило, индуктивное, идущее порой от постановки задачи и наводящих эвристических соображений по ее решению к основным понятиям и формализмам.

Подробное вначале, изложение становится все более сжатым по мере продвижения по курсу.

Упор сделан на эффективном аппарате гладкого анализа. При изложении теории я (в меру своего понимания) стремился выделить наиболее существенные методы и факты и избежать искушения незначительного усиления теорем ценой значительного усложнения доказательств.

Изложение геометрично всюду, где это представлялось ценным для раскрытия существа дела.

Основной текст снабжен довольно большим количеством примеров, а почти каждый параграф заканчивается набором задач, которые, надеюсь, существенно

дополняют даже теоретическую часть основного текста. Следуя великолепному опыту Полиа и Сеге, я часто старался представить красивый математический или важный прикладной результат в виде серий доступных читателю задач.

Расположение материала диктовалось не только архитектурой математики в смысле Бурбаки, но и положением анализа как составной части единого математического или, лучше сказать, естественно-математического образования.

По содержанию. Курс издается в двух книгах (части I и II).

Настоящая первая часть содержит дифференциальное и интегральное исчисление функций одной переменной и дифференциальное исчисление функций многих переменных.

В дифференциальном исчислении выделена роль дифференциала как линейного эталона для локального описания характера изменения переменной величины. Кроме многочисленных примеров использования дифференциального исчисления для исследования функциональных зависимостей (монотонность, экстремумы), показана роль языка анализа в записи простейших дифференциальных уравненийматематических моделей конкретных явлений и связанных с ними содержательных задач. Рассмотрен ряд таких зада (например, движение тела переменной массы, ядерный реактор, атмосферное давление, движение в сопротивляющейся среде), решение которых приводит к важнейшим элементарным функциям. Полнее использован комплексный язык, в частности, выведена формула Эйлера и показано единство основных элементарных функций.

Интегральное исчисление сознательно изложено по возможности на наглядном материале в рамках интеграла Римана. Для большинства приложений этого вполне хватает. Указаны различные приложения интеграла, в том числе приводящие к несобственному интегралу (например, работа выхода из поля тяготения и вторая космическая скорость) или к эллиптическим функциям (движение в поле тяжести при наличии связей, маятник).

Дифференциальное исчисление функций нескольких переменных довольно геометрично. В нем, например, рассмотрены такие важные и полезные следствия теоремы о неявной функции, как криволинейные координаты и локальное приведение к каноническому виду гладких отображений (теорема о ранге) и функций (лемма Морса), а также теория условного экстремума.

Результаты, относящиеся к теории непрерывных функций и дифференциальному исчислению, подытожены и изложены в общем инвариантном виде в двух главах, которые естественным образом примыкают к дифференциальному исчислению вещественнозначных функций нескольких переменных. Эти две главы открывают вторую часть курса. Вторая книга, в которой, кроме

того, изложено интегральное исчисление функций многих переменных, доведенное до общей формулы Ньютона—Лейбница — Стокса, приобретает, таким образом, определенную целостность.

Более полные сведения о второй книге мы поместим в предисловии к ней, а здесь добавим только, что кроме уже перечисленного материала она содержит сведения о рядах функций (степенных рядах и рядах Фурье в том числе), об интегралах, зависящих от параметра (включая фундаментальное решение, свертку и преобразование Фурье), а также об асимптотических разложениях (они обычно мало представлены в учебной литературе).

Остановимся теперь на некоторых частных вопросах.

О введении. Вводного обзора предмета я не писал, поскольку большинство начинающих студентов уже имеют из школы первое представление о дифференциальном и интегральном исчислении и его приложениях, а на большее вступительный обзор вряд ли мог бы претендовать. Вместо него я в первых двух главах довожу до определенной математической завершенности представления бывшего школьника о множестве, функции, об использовании логической символики, а также о теории действительного числа.

Этот материал относится к формальным основаниям анализа и адресован в первую очередь студенту-математику, который в какой-то момент захочет проследить логическую структуру базисных понятий и принципов, используемых в классическом анализе. Собственно математический анализ в книге начинается с третьей главы, поэтому читатель, желающий по возможности скорее получить в руки эффективный аппарат и увидеть его приложения, при первом чтении вообще может начать с главы III, возвращаясь к более ранним страницам в случае, если что-то ему покажется неочевидным и вызовет вопрос, на который, надеюсь, я тоже обратил внимание и предусмотрительно дал ответ в первых главах.

О рубрикации. Материал обеих книг разбит на главы, имеющие сплошную нумерацию. Параграфы нумеруются в пределах каждой главы отдельно; подразделения параграфа нумеруются только в пределах этого параграфа. Теоремы, утверждения, леммы, определения и примеры для большей логической четкости выделяются, а для удобства ссылок нумеруются в пределах каждого параграфа.

О вспомогательном материале. Несколько глав книги написаны как естественное окаймление классического анализа. Это, с одной стороны, уже упоминавшиеся главы I, II, посвященные его формально-математическим основаниям, а с другой стороны, главы IX, X, XV второй части, дающие современный взгляд на теорию непрерывности, дифференциальное и интегральное исчисление, а также глава XIX, посвященная некоторым эффективным асимптотическим методам анализа.

Вопрос о том, какая часть материала этих глав включается в лекционный курс, зависит от контингента слушателей и решается лектором, но некоторые вводимые здесь фундаментальные понятия обычно присутствуют в любом изложении предмета математикам.

В заключение я хотел бы поблагодарить тех, чья дружеская и квалифицированная профессиональная помощь была мне дорога и полезна при работе над этой книгой.

Предлагаемый курс довольно тщательно и во многих аспектах согласовывался с последующими современными университетскими математическими курсами — такими, например, как дифференциальные уравнения, дифференциальная геометрия, теория функций комплексного переменного, функциональный анализ. В этом отношении мне были весьма полезны контакты и обсуждения с В. И. Арнольдом и, особенно многочисленные, с С. П. Новиковым в период совместной работы в экспериментальном потоке при отделении математики.

Много советов я получил от Н. В. Ефимова, заведующего кафедрой математического анализа механико-математического факультета МГУ.

Я признателен также коллегам по кафедре и факультету за замечания к ротапринтному изданию моих лекций.

При работе над книгой ценными оказались предоставленные в мое распоряжение студенческие записи моих лекций последнего времени, за что я благодарен их владельцам.

Я глубоко признателен официальным рецензентам издательства Л. Д. Кудрявцеву, В. П. Петренко, С. Б. Стечкину за конструктивные замечания, значительная часть которых учтена в предлагаемом читателю тексте.

Москва, 1980 В. Зорич

1
Оглавление
email@scask.ru