Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
ИЗ ПРЕДИСЛОВИЯ К ПЕРВОМУ ИЗДАНИЮСоздание Ньютоном и Лейбницем три столетия тому назад основ дифференциального и интегрального исчисления даже по нынешним масштабам представляется крупнейшим событием в истории науки вообще и математики в особенности. Математический анализ (в широком смысле слова) и алгебра, переплетаясь, образовали теперь ту корневую систему, на которой держится разветвленное дерево современной математики и через которую происходит его основной живительный контакт с внематематической сферой. Именно по этой причине основы анализа включаются как необходимый элемент даже самых скромных представлений о так называемой высшей математике, и, вероятно, поэтому изложению основ анализа посвящено большое количество книг, адресованных различным кругам читателей. Эта книга в первую очередь адресована математикам, желающим (как и должно) получить полноценные в логическом отношении доказательства фундаментальных теорем, но вместе с тем интересующимся также их внематематической жизнью. Особенности настоящего курса, связанные с указанными обстоятельствами, сводятся в основном к следующему. По характеру изложения. В пределах каждой большой темы изложение, как правило, индуктивное, идущее порой от постановки задачи и наводящих эвристических соображений по ее решению к основным понятиям и формализмам. Подробное вначале, изложение становится все более сжатым по мере продвижения по курсу. Упор сделан на эффективном аппарате гладкого анализа. При изложении теории я (в меру своего понимания) стремился выделить наиболее существенные методы и факты и избежать искушения незначительного усиления теорем ценой значительного усложнения доказательств. Изложение геометрично всюду, где это представлялось ценным для раскрытия существа дела. Основной текст снабжен довольно большим количеством примеров, а почти каждый параграф заканчивается набором задач, которые, надеюсь, существенно дополняют даже теоретическую часть основного текста. Следуя великолепному опыту Полиа и Сеге, я часто старался представить красивый математический или важный прикладной результат в виде серий доступных читателю задач. Расположение материала диктовалось не только архитектурой математики в смысле Бурбаки, но и положением анализа как составной части единого математического или, лучше сказать, естественно-математического образования. По содержанию. Курс издается в двух книгах (части I и II). Настоящая первая часть содержит дифференциальное и интегральное исчисление функций одной переменной и дифференциальное исчисление функций многих переменных. В дифференциальном исчислении выделена роль дифференциала как линейного эталона для локального описания характера изменения переменной величины. Кроме многочисленных примеров использования дифференциального исчисления для исследования функциональных зависимостей (монотонность, экстремумы), показана роль языка анализа в записи простейших дифференциальных уравнений — математических моделей конкретных явлений и связанных с ними содержательных задач. Рассмотрен ряд таких зада (например, движение тела переменной массы, ядерный реактор, атмосферное давление, движение в сопротивляющейся среде), решение которых приводит к важнейшим элементарным функциям. Полнее использован комплексный язык, в частности, выведена формула Эйлера и показано единство основных элементарных функций. Интегральное исчисление сознательно изложено по возможности на наглядном материале в рамках интеграла Римана. Для большинства приложений этого вполне хватает. Указаны различные приложения интеграла, в том числе приводящие к несобственному интегралу (например, работа выхода из поля тяготения и вторая космическая скорость) или к эллиптическим функциям (движение в поле тяжести при наличии связей, маятник). Дифференциальное исчисление функций нескольких переменных довольно геометрично. В нем, например, рассмотрены такие важные и полезные следствия теоремы о неявной функции, как криволинейные координаты и локальное приведение к каноническому виду гладких отображений (теорема о ранге) и функций (лемма Морса), а также теория условного экстремума. Результаты, относящиеся к теории непрерывных функций и дифференциальному исчислению, подытожены и изложены в общем инвариантном виде в двух главах, которые естественным образом примыкают к дифференциальному исчислению вещественнозначных функций нескольких переменных. Эти две главы открывают вторую часть курса. Вторая книга, в которой, кроме того, изложено интегральное исчисление функций многих переменных, доведенное до общей формулы Ньютона—Лейбница — Стокса, приобретает, таким образом, определенную целостность. Более полные сведения о второй книге мы поместим в предисловии к ней, а здесь добавим только, что кроме уже перечисленного материала она содержит сведения о рядах функций (степенных рядах и рядах Фурье в том числе), об интегралах, зависящих от параметра (включая фундаментальное решение, свертку и преобразование Фурье), а также об асимптотических разложениях (они обычно мало представлены в учебной литературе). Остановимся теперь на некоторых частных вопросах. О введении. Вводного обзора предмета я не писал, поскольку большинство начинающих студентов уже имеют из школы первое представление о дифференциальном и интегральном исчислении и его приложениях, а на большее вступительный обзор вряд ли мог бы претендовать. Вместо него я в первых двух главах довожу до определенной математической завершенности представления бывшего школьника о множестве, функции, об использовании логической символики, а также о теории действительного числа. Этот материал относится к формальным основаниям анализа и адресован в первую очередь студенту-математику, который в какой-то момент захочет проследить логическую структуру базисных понятий и принципов, используемых в классическом анализе. Собственно математический анализ в книге начинается с третьей главы, поэтому читатель, желающий по возможности скорее получить в руки эффективный аппарат и увидеть его приложения, при первом чтении вообще может начать с главы III, возвращаясь к более ранним страницам в случае, если что-то ему покажется неочевидным и вызовет вопрос, на который, надеюсь, я тоже обратил внимание и предусмотрительно дал ответ в первых главах. О рубрикации. Материал обеих книг разбит на главы, имеющие сплошную нумерацию. Параграфы нумеруются в пределах каждой главы отдельно; подразделения параграфа нумеруются только в пределах этого параграфа. Теоремы, утверждения, леммы, определения и примеры для большей логической четкости выделяются, а для удобства ссылок нумеруются в пределах каждого параграфа. О вспомогательном материале. Несколько глав книги написаны как естественное окаймление классического анализа. Это, с одной стороны, уже упоминавшиеся главы I, II, посвященные его формально-математическим основаниям, а с другой стороны, главы IX, X, XV второй части, дающие современный взгляд на теорию непрерывности, дифференциальное и интегральное исчисление, а также глава XIX, посвященная некоторым эффективным асимптотическим методам анализа. Вопрос о том, какая часть материала этих глав включается в лекционный курс, зависит от контингента слушателей и решается лектором, но некоторые вводимые здесь фундаментальные понятия обычно присутствуют в любом изложении предмета математикам. В заключение я хотел бы поблагодарить тех, чья дружеская и квалифицированная профессиональная помощь была мне дорога и полезна при работе над этой книгой. Предлагаемый курс довольно тщательно и во многих аспектах согласовывался с последующими современными университетскими математическими курсами — такими, например, как дифференциальные уравнения, дифференциальная геометрия, теория функций комплексного переменного, функциональный анализ. В этом отношении мне были весьма полезны контакты и обсуждения с В. И. Арнольдом и, особенно многочисленные, с С. П. Новиковым в период совместной работы в экспериментальном потоке при отделении математики. Много советов я получил от Н. В. Ефимова, заведующего кафедрой математического анализа механико-математического факультета МГУ. Я признателен также коллегам по кафедре и факультету за замечания к ротапринтному изданию моих лекций. При работе над книгой ценными оказались предоставленные в мое распоряжение студенческие записи моих лекций последнего времени, за что я благодарен их владельцам. Я глубоко признателен официальным рецензентам издательства Л. Д. Кудрявцеву, В. П. Петренко, С. Б. Стечкину за конструктивные замечания, значительная часть которых учтена в предлагаемом читателю тексте. Москва, 1980 В. Зорич
|
1 |
Оглавление
|