§ 2. Свойства непрерывных функций
1. Локальные свойства.
Локальными называют такие свойства функций, которые определяются поведением функции в сколь угодно малой окрестности точки области определения.
Таким образом, сами локальные свойства характеризуют поведение функции в каком-то предельном отношении, когда аргумент функции стремится к исследуемой точке. Например, непрерывность функции в некоторой точке области определения, очевидно, есть локальное свойство функции.
Укажем основные локальные свойства непрерывных функций.
Теорема 1. Пусть
— функция, непрерывная в точке а
. Тогда справедливы следующие утверждения:
1° Функция
ограничена в некоторой окрестности
точки а.
2° Если
то в некоторой окрестности
точки а все значения функции положительны или отрицательны вместе с
3° Если функция
определена в некоторой окрестности точки а и, как и
непрерывна в самой точке а, то функции:
определены в некоторой окрестности точки а и непрерывны в точке а.
4° Если функция
непрерывна в точке
функция
такова, что
непрерывна в точке а, то композиция
определена на Е и также непрерывна в точке а.
Для доказательства теоремы достаточно вспомнить (см. § 1), что непрерывность функции
или
в некоторой точке а области определения равносильна тому, что предел этой функции по базе
окрестностей точки а существует и равен значению функции в самой точке
Таким образом, утверждения 1°, 2°, 3° теоремы 1 непосредственно вытекают из определения непрерывности функции в точке и соответствующих свойств предела функции.
В пояснении нуждается только то, что отношение в самом деле определено в некоторой окрестности
точки а. Но, по условию,
и в силу утверждения 2° теоремы найдется окрестность
в любой точке которой
т. е. определено в
Утверждение 4° теоремы 1 является следствием теоремы о пределе композиции, в силу которой
что равносильно непрерывности
в точке а.
Однако для применения теоремы о пределе композиции нужно проверить, что для любого элемента
базы
найдется элемент
базы
такой, что
Но в самом деле, если
то по определению непрерывности функции
в точке а для окрестности
найдется окрестность
точки а в множестве Е такая, что
Поскольку
действует из Е в У, то
и мы проверили законность применения теоремы о пределе композиции.
Пример 1. Алгебраический многочлен
является функцией, непрерывной на Е. х
Действительно, из пункта 3° теоремы 1 по индукции следует, что сумма и произведение конечного числа непрерывных в некоторой точке функций есть функция непрерывная в этой точке. Мы проверили в примерах 1 и 2 § 1, что постоянная функция и функции
непрерывны на Е. Тогда на Е непрерывны и функции
следовательно, и полином
Пример 2. Рациональная функция
— отношение полиномов — непрерывна всюду, где она определена, т. е. где
Это следует из примера 1 и утверждения 3° теоремы 1.
Пример 3. Композиция конечного числа непрерывных функций непрерывна в любой точке области своего определения. Это по индукции вытекает из утверждения 4° теоремы 1. Например, функция
непрерывна всюду на Е, за исключением точек
к
где она не определена.