2. Мощность континуума
Определение 2. Множество Е действительных чисел называют также числовым континуумома его мощность — мощностью континуума.
Теорема (Кантор).
Теорема утверждает, что бесконечное множество Е имеет мощность большую, чем бесконечное множество
Покажем, что уже множество точек отрезка [0,1] несчетно.
Предположим, что оно счетно, т. е. может быть записано в виде последовательности
Возьмем точку
и на отрезке
фиксируем отрезок ненулевой длины, не содержащий точку
. В отрезке
строим отрезок 12, не содержащий
и если уже построен отрезок
то, поскольку
в нем строим отрезок
так, что
По лемме о вложенных отрезках найдется точка с, принадлежащая всем отрезкам
Но эта точка отрезка
по построению не может совпадать ни с одной из точек последовательности
Следствия.
и существуют иррациональные числа.
2) Существуют трансцендентные числа, поскольку множество алгебраических чисел счетно.
(После решения задачи 3, помещенной в конце параграфа, читатель, наверное, захочет переиначить последнее утверждение и сформулировать его так: «В множестве действительных чисел иногда встречаются также и алгебраические
Уже на заре теории множеств возник вопрос о том, существуют ли множества промежуточной мощности между счетными множествами и множествами мощности континуума, и было высказано предположение, называемое гипотезой континуума, что промежуточные мощности отсутствуют.
Вопрос оказался глубоко затрагивающим основания математики. Он был окончательно решен в 1963 г. современным американским математиком П. Коэном. Коэн доказал неразрешимость гипотезы континуума, показав, что и она сама, и ее отрицание порознь не противоречат принятой в теории множеств аксиоматике, а потому гипотеза континуума не может быть ни доказана, ни опровергнута в рамках этой аксиоматики, — ситуация, вполне аналогичная независимости пятого постулата Евклида о параллельных от остальных аксиом геометрии.