Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
3. Понятие размерности.Понятие о «числе измерений», или о «размерности», не представляет особых затруднений, поскольку речь идет о простых геометрических образах, каковы точки, линии, треугольники или многогранники. Отдельная точка или любое конечное множество точек имеет размерность нуль, отрезок — размерность 1, поверхность треугольника или сферы — размерность 2. Множество всех точек куба имеет размерность 3. Однако при желании обобщить понятие размерности на точечные множества более общих типов возникает необходимость в точном определении. Какую размерность следует, например, приписать множеству Еще запутаннее обстоит дело с размерностью любопытного множества, впервые рассмотренного Кантором, построенного следующим образом. Из единичного отрезка
Рис. 130. Канторово множество интервалов равна
Бесконечный ряд в больших скобках есть геометрическая прогрессия, сумма которой равна
ему принадлежат. Можно легко убедиться, что множество С состоит из всех тех чисел х, разложения которых в бесконечную дробь по основанию 3 могут быть написаны в форме
где всякое Какова же размерность множества С? Диагональный процесс, с помощью которого была доказана несчетность множества всех действительных чисел, может быть видоизменен таким образом, чтобы тот же результат получился и для множества С. Отсюда было бы естественно заключить, что множеству С надлежит приписать размерность 1. С другой стороны, С не содержит никакого, даже самого малого, промежутка, как и любое конечное множество; это сближает С с множествами размерности 0. Таким же образом, восставив в плоскости х, у из каждой рациональной точки или из каждой точки канторова множества перпендикуляр длины 1 к оси х (направляя его в сторону положительных значений Впервые Пуанкаре (в 1912 г.) обратил внимание на необходимость более глубокого анализа и более точного определения размерности. Пуанкаре заметил, что прямая или кривая имеет размерность 1, так как любые две точки на ней можно разделить, удаляя одну единственную точку (множество размерности 0); плоскость же имеет размерность 2 по той причине, что для разделения двух точек на плоскости нужно удалить целую замкнутую кривую (множество размерности 1). Это приводит к мысли о том, что понятие размерности имеет «индуктивную» природу: некоторому «пространству» следует приписать размерность За последние годы была развита обширная теория — теория размерности. Определение размерности начинается с того, что разъясняется смысл термина «точечное множество размерности 0». Любое конечное точечное множество обладает тем свойством, что каждая его точка может быть заключена в сколь угодно малую область пространства, причем на границе области нет точек множества. Это свойство принимается теперь за определение размерности 0. Условимся ради удобства говорить, что пустое множество имеет размерность —1. В таком случае множество S имеет размерность 0, если оно не имеет размерности —1 (т. е. если S содержит хоть одну точку) и если каждая точка S может быть заключена в произвольно малую область, граница которой пересекает S по множеству размерности —1 (т. е. совсем не содержит ни одной точки Итак, мы уже определили понятия «размерность —1» и «размерность 0». Теперь легко понять, что такое «размерность 1»: говорят, что множество S имеет «размерность 1», если оно не есть ни размерности —1, ни размерности 0 и если каждая точка S может быть заключена в произвольно малую область, граница которой пересекается с 5 по множеству размерности 0. Отрезок прямой обладает этим свойством, так как границей каждого промежутка является пара точек, т. е. множество размерности 0 по предыдущему определению. Дальше, продолжая таким же образом, мы можем последовательно определить, что такое размерность 2, размерность 3 и т.д., причем каждое следующее определение основывается на предыдущем. Таким образом, говорят, что множество S имеет размерность заключена в произвольно малую область, граница которой пересекается с 5 по множеству размерности
а «расстояние» между
Можно показать, что это пространство имеет размерность В теории размерности устанавливается одно чрезвычайно интересное свойство двумерных, трехмерных и вообще объемная фигура (тело) разбита на достаточно маленькие ячейки, то наверное существуют точки, принадлежащие по меньшей мере четырем ячейкам, и вместе с тем можно выбрать такие подразделения, что никакая точка не будет принадлежать сразу больше чем четырем ячейкам.
Рис. 131. Теорема о покрытии Все эти соображения приводят нас к следующей теореме, высказанной Лебегом и Брауэром: если Размерность фигуры относится к числу топологических ее свойств: никакие две фигуры различных размерностей не могут быть топологически эквивалентными. В этом заключается замечательная теорема об «инвариантности размерности»: чтобы оценить ее должным образом, стоит напомнить другую теорему (доказанную на стр. 120), согласно которой множество точек квадрата имеет ту же мощность, что и множество точек отрезка. Соответствие между точками, установленное при доказательстве этой теоремы, не топологическое, так как требование непрерывности нарушается.
|
1 |
Оглавление
|