Главная > Что такое математика?
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

2. Проективные преобразования.

Изучение относящихся сюда геометрических свойств было выдвинуто перед математиками в давнее время проблемами перспективы, которые изучались художниками, в том числе Леонардо да Винчи и Альбрехтом Дюрером. Изображение, создаваемое художником, следует рассматривать как проекцию оригинала на плоскость картины, причем центр проекции помещается в глазе художника. При проектировании в зависимости от относительных положений различных изображаемых объектов — длины отрезков и углы неизбежно подвергаются искажениям. И тем не менее на картине обычно не представляет труда распознать геометрическую структуру оригинала. Как объяснить это обстоятельство? Нельзя объяснить иначе, как указав на наличие геометрических свойств, «инвариантных относительно проектирования» — свойств, сохраняющихся на картине и делающих возможным узнавание нарисованного оригинала. Отыскание и анализ этих свойств составляют предмет проективной геометрии.

Совершенно ясно, что в этой отрасли геометрии не содержится положительных утверждений, относящихся к длинам отдельных отрезков Или к величинам отдельных углов; не идет речь и о равенстве фигур. Некоторые изолированные факты, касающиеся проективных свойств,

были известны уже в XVII в., а иногда, как в случае «теоремы Менелая», даже в древности. Но систематические исследования в области проективной геометрии развернулись впервые лишь к концу XVIII столетия, когда знаменитая Ecole Polytechnique в Париже открыла новую страницу в истории математики, в частности геометрии. Эта школа, созданная Французской революцией, подготовила большое число офицеров, оказавших на военной службе выдающиеся услуги своей республике. В числе ее питомцев был Жан-Виктор Понселе (1788-1867), написавший свой «Трактат о проективных свойствах фигур» в 1813 г., будучи в плену в России.

В XIX в. под влиянием Штейнера, Штаудта, Шаля и других проективная геометрия стала одним из излюбленных предметов математических исследований. Своей популярностью она обязана отчасти присущей ей особенной эстетической привлекательности, отчасти же способности проливать свет на геометрическую науку в целом, а также глубокой внутренней связи с неевклидовой геометрией и с алгеброй.

Рис. 70. Проекция из точки

<< Предыдущий параграф Следующий параграф >>
Оглавление