§ 1. Интеграл
1. Площадь как предел.
Для того чтобы вычислить площадь плоской фигуры, мы в качестве единицы площади выбираем квадрат со стороной, равной единице длины. Если единицей длины является сантиметр, соответствующей единицей площади будет квадратный сантиметр, т. е. квадрат, длина стороны которого равна сантиметру. С помощью этого определения весьма легко вычислить площадь прямоугольника. Если длины двух смежных сторон, измеренные в линейных единицах, представляются числами
то площадь прямоугольника равна
квадратных единиц или, короче, площадь равна произведению
Это справедливо для любых
как рациональных, так и иррациональных. В случае рациональных значений
мы получаем этот результат, выполняя замену
где
целые числа. После этого мы находим общую меру
обеих сторон — таким образом, что
Наконец, мы разбиваем прямоугольник на мелкие квадратики со стороной и с
площадью
Всего таких квадратиков будет
и общая площадь равна
для случая
иррациональных тот же результат получится, если сначала заменим
соответственно приближающими их рациональными числами
а затем заставим
стремиться к
Геометрически очевидно, что площадь треугольника равна половине площади прямоугольника с тем же основанием
и высотой
таким образом, площадь треугольника выражается хорошо известной формулой Любая плоская область, ограниченная одной или несколькими ломаными, может быть разбита на треугольники; таким образом, ее площадь может быть получена как сумма площадей этих треугольников.
Потребность в более общем методе вычисления площадей возникает в связи с вопросом о вычислении площадей фигур, ограниченных уже не ломаными, а кривыми. Каким образом станем мы определять, например, площадь круга или сегмента параболы? Этот капитальной важности вопрос, с решением которого связано обоснование интегрального исчисления, рассматривался с очень давних пор; еще в III в. до нашей эры Архимед вычислял площади подобного рода с помощью процедуры «исчерпания». Попробуем вместе с Архимедом и великими математиками до времен Гаусса стать на «наивную» точку зрения, согласно которой криволинейные площади являются интуитивно данными сущностями, так что вопрос стоит не об определении понятия площади, а о вычислении площади (см., однако, анализ понятия, произведенный на стр. 527). В рассматриваемую криволинейную область впишем многоугольник, ограниченный ломаной линией и обладающий прекрасно определенной площадью. Выбирая новый многоугольник такого же типа, включающий первый, мы получим лучшее приближение для площади заданной области. Продолжая таким образом, мы постепенно «исчерпаем» всю область и получим искомую площадь как предел площадей надлежащим образом подобранной последовательности вписанных многоугольников с возрастающим числом сторон. Так может быть вычислена площадь круга с радиусом 1; ее числовое значение обозначается символом
Эту общую схему Архимед провел до конца в случае круга и в случае параболического сегмента. В течение XVII столетия было с успехом разобрано много других примеров. В каждом случае само вычисление предела ставилось в зависимость от того или иного остроумного приема, специально подобранного для каждой отдельной задачи. Одним из
главных достижений анализа была замена этих специальных искусственных процедур одним общим и мощным методом.