Глава VII. Максимумы и минимумы
Введение
Отрезок прямой линии определяет кратчайший путь между двумя его конечными точками. Дуга большого круга представляет собой кратчайшую кривую, которой можно соединить две точки на сфере. Среди всех замкнутых плоских кривых одной и той же длины наибольшая площадь охватывается окружностью, а среди всех замкнутых поверхностей одной и той же площади наибольший объем охватывается сферой.
Максимальные и минимальные свойства подобного рода были известны древним греческим математикам, хотя и не всегда со строгими их доказательствами. Одно из самых замечательных относящихся сюда открытий приписывается Герону, александрийскому ученому I столетия нашей эры. Издавна было известно, что световой луч, выходящий из точки Р и встречающийся с плоским зеркалом отражается в направлении некоторой точки таким образом, что и образуют одинаковые углы с зеркалом. По преданию, Герон установил, что если любая точка зеркала, отличная от то сумма отрезков больше, чем Эта теорема (которую мы скоро докажем) характеризует истинный путь светового луча между как кратчайший путь от Р к с заходом на зеркало открытие, которое можно рассматривать как зародыш теории геометрической оптики.
Нет ничего удивительного в том, что математики живейшим образом интересуются подобного рода вопросами. В повседневной жизни постоянно возникают проблемы наибольшего и наименьшего, наилучшего и наихудшего. Именно в такой форме могут быть поставлены многие задачи, имеющие практическое значение. Например, каковы должны быть очертания судна, для того чтобы оно испытывало при движении в воде наименьшее сопротивление? Каково должно быть соотношение размеров цилиндрического резервуара, чтобы при заданном расходе материала объем был наибольшим?
Возникнув в XVII столетии, общая теория экстремальных, т. е. максимальных и минимальных, значений величин выдвинула обширный ряд принципов науки, служащих целям обобщения и систематизации. Первые шаги, сделанные Ферма в области дифференциального исчисления, были ускорены стремлением найти общие методы для изучения вопросов о максимумах и минимумах. В последующем столетии эти методы были значительно обогащены с изобретением вариационного исчисления. Становилось все яснее и яснее, что физические законы природы в высшей степени удачно формулируются в терминах принципа минимальности, обеспечивающего естественный подход к более или менее полному решению частных проблем. Одним из самых замечательных достижений современной математики является теория стационарных значений, дающая такого рода расширение понятия максимума и минимума, которое базируется одновременно на анализе и на топологии.
Мы будем здесь рассматривать весь вопрос в целом с совершенно элементарной точки зрения.