Главная > Что такое математика?
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

§ 2. Производная

1. Производная как наклон.

В то время как понятие интеграла своими корнями уходит в античную древность, другое основное понятие анализа — производная — было сформулировано только в XVII столетии знаменитым математиком Ферма и другими. Сделанное Ньютоном и Лейбницем открытие органической связи между этими понятиями, казалось бы столь различными, способствовало небывалому развитию математической науки.

Ферма интересовался вопросом об определении наибольших и наименьших значений функции При изучении графика функции принято называть максимумом точку, расположенную выше всех других, а минимумом — точку, расположенную ниже всех других точек в ее окрестности. На рис. 191 на стр. 393 точка В является максимумом, точка С — минимумом. Естественно при нахождении максимума или минимума использовать понятие касательной к кривой. Предположим, что график кривой нигде не образует острых углов и не обладает другими особенностями, и что в каждой точке он имеет определенное направление, определяемое касательной прямой. В точках максимума

Рис. 267. Наклоны прямых

или минимума касательная к кривой должна быть параллельна оси в противном случае кривая около этих точек или поднималась бы, или опускалась бы. Это замечание побуждает нас заняться общим вопросом об определении направления касательной к кривой в любой точке Р этой кривой.

Чтобы характеризовать направление прямой в плоскости х, у, обыкновенно задается ее наклон, который представляет собой тангенс угла а между положительным направлением оси х и рассматриваемой прямой. Если Р есть некоторая точка прямой продвигаемся вправо от нее до некоторой точки а затем вверх или вниз до точки лежащей на прямой, тогда наклон равен т. е. Отрезок предполагается положительным, тогда как положительным или отрицательным в зависимости от того, будет ли он направлен вверх или вниз; таким образом, наклон дает нам подъем или падение на единицу длины по горизонтали (при перемещении по прямой слева направо). На рис. 267 наклон первой прямой равен 2/3, в то время как наклон второй прямой равен —1.

Под наклоном кривой в точке Р мы подразумеваем наклон ее касательной в этой точке. Поскольку мы расположены принять понятие касательной как интуитивно данное, перед нами остается только задача — найти способ для вычисления наклона кривой. В настоящий момент мы станем на именно такую точку зрения: более тщательный анализ относящихся сюда проблем будет произведен в дополнении к этой главе.

1
Оглавление
email@scask.ru