§ 6. Аналитическое представление
1. Вводные замечания.
В раннем периоде развития проективной геометрии существовала настойчиво проводимая тенденция выполнять все построения на синтетической или, как говорилось, «чисто геометрической» основе, избегая вовсе применения чисел и алгебраических методов. Выполнение этой программы встретило на своем пути большие затруднения, так как всегда оставались какие-то пункты, в которых алгебраические формулировки казались неизбежными. Полный успех в построении чисто синтетической проективной геометрии был достигнут только к концу XIX в. и только ценой значительных осложнений. В этом отношении методы аналитической геометрии оказались гораздо более плодотворными. Для современной математики характерна иная тенденция — положить в основу построения понятие числа, и в геометрии эта тенденция, идущая от Ферма и Декарта, возымела решительный триумф. Аналитическая геометрия перестала быть
подсобным аппаратом, играющим служебную роль в геометрических рассуждениях, и стала самостоятельной областью, в которой интуитивная геометрическая интерпретация операций и результатов уже не является последней и окончательной целью, а принимает на себя функцию руководящего принципа, помогающего угадывать и понимать аналитические факты. Такое изменение значения геометрии есть последствие постепенного развития геометрии в историческом плане — развития, широко раздвинувшего рамки классических концепций; оно же обусловило вместе с тем почти органическое слияние геометрии и анализа.
В аналитической геометрии под «координатами» геометрического объекта понимается какая угодно совокупность чисел, позволяющая определить этот объект однозначно. Так, точка определяется своими прямоугольными координатами х, у или своими полярными координатами
с другой стороны, например, треугольник определяется координатами трех вершин, что в целом составляет шесть координат. Мы знаем, что прямая линия в плоскости
у представляет собой геометрическое место всех точек
(об обозначениях см. на стр. 105), координаты которых удовлетворяют некоторому линейному уравнению
Поэтому можно три числа а, b, с назвать «координатами» этой прямой. Например,
определяют прямую
т.е. ось
определяют прямую
которая делит пополам угол между положительной осью
и положительной осью у. Таким же образом следующие уравнения определяют «конические сечения»:
окружность радиуса
с центром в начале координат,
окружность радиуса
с центром
эллипс и т. д.
Более или менее наивный подход к аналитической геометрии заключается в том, чтобы, отправляясь от чисто «геометрических» представлений — точка, прямая и т. д., — переводить их затем на язык чисел. Современная точка зрения противоположна. Мы отправляемся от множества всевозможных пар чисел
у и называем каждую такую пару точкой, так как можем, если пожелаем, наглядно интерпретировать такую пару чисел с помощью общедоступного понятия геометрической точки. Точно так же прямая линия является геометрическим представлением или интерпретацией линейного уравнения, связывающего х и у. Указанный перенос акцента от интуитивного понимания геометрии к аналитическому открывает возможность, в частности, простой и вполне строгой трактовки бесконечно удаленных точек в
проективной геометрии; он же необходим для более глубокого проникновения в эту область. Для тех читателей, которые обладают достаточной предварительной математической подготовкой, мы дадим теперь некоторый очерк применения аналитических методов в проективной геометрии.