всякого рационального числа обладает свойством периодичности; после некоторого числа десятичных знаков одна и та же группа десятичных знаков начинает повторяться бесконечное число раз. Например, и т. д. (Заметим по поводу тех рациональных чисел, которые представляются в виде конечной десятичной дроби, что у этой конечной дроби можно вообразить после последнего ее десятичного знака бесконечно повторяющуюся цифру , и, таким образом, рассматриваемые рациональные числа не исключаются из данной выше общей формулировки.) Из приведенных примеров видно, что у некоторых из десятичных разложений, соответствующих рациональным числам, периодическому «хвосту» предшествует непериодическая «голова».
Обратно, можно показать, что все периодические дроби представляют собой рациональные числа. Рассмотрим, например, бесконечную периодическую дробь
Можно написать: Выражение в скобках есть бесконечная геометрическая прогрессия:
Значит,
В общем случае доказательство строится таким же образом, но затруднено необходимостью вводить несколько громоздкие обозначения. Рассмотрим периодическую дробь общего вида
Обозначим через периодическую часть нашего разложения. Тогда можно написать:
Выражение в скобках — бесконечная геометрическая прогрессия, для которой Сумма этой прогрессии, согласно формуле (10) предыдущего пункта, равна и потому
Упражнения.
(см. скан)