Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше
Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике
§ 149. Эффективное торможение
В применениях теории столкновений большое значение имеет вычисление средней потери энергии сталкивающейся частицей. Эту потерю удобно характеризовать величиной
(149,1)
которую мы будем называть эффективным торможением (дифференциальным); суммирование производится, разумеется, по состояниям как дискретного, так и непрерывного спектров,
отнесено к рассеянию в данный элемент телесного угла
.
Общая формула для эффективного торможения быстрых электронов имеет вид
(149,2)
(
из (148,9)).
Исключим, как и при выводе (148,23), из рассмотрения область совсем малых углов и снова будем считать, что
тогда q не зависит от величины передаваемой энергии и сумма по
может быть вычислена в общем виде.
Сумма вычисляется с помощью теоремы суммирования, которая выводится следующим образом. Матричные элементы от некоторой величины f (функции координат) и ее производной по времени f связаны друг с другом формулой
Поэтому имеем
Волновые функции стационарных состояний атома можно выбрать вещественными. Тогда матричные элементы функции координат
связаны соотношениями
, а для матричных элементов (149,3) имеем соответственно
Поэтому рассматриваемую сумму можно написать также и в виде
Взяв полусумму обоих выражений, получим искомую теорему
Применим ее к величине
. Согласно (19,2) ее производная по времени изобразится оператором
Прямое вычисление дает
Подставив в (149,4), получим формулу
(149,5)
которая и осуществляет нужное нам суммирование.
Таким образом, для дифференциального эффективного торможения находим формулу
(149,6)
Область ее применимости дается неравенством
.
Далее, определим полное эффективное торможение
для всех столкновений, сопровождающихся передачей импульса, не превышающей некоторого значения
такого, что
(149,7)
дается формулой (148,11). Знак интеграла нельзя вынести из-под знака суммы, так как
зависит от
.
Разобьем область интегрирования на две части — от
до
и от
до
где
— такое значение q, что
. Тогда во всей области интегрирования от
до
можно воспользоваться для
выражением
откуда
(149,8)
В области же от
до
можно произвести сначала суммирование по
, приводящее для
к выражению (149,6), которое при интегрировании по
дает
(149,9)
Для преобразования полученных выражений воспользуемся теоремой суммирования, получающейся из формулы (149,4), если положить в ней
Коммутирование
дает
в данном случае совпадает с
что
Величины
называют силами осцилляторов соответствующих переходов.
Введем некоторую среднюю атомную энергию
согласно
(149,11)
Используя (149,10), формулу (149,8) можно переписать в виде
Складывая с (149,9), окончательно получаем
(149,12)
В эту формулу входит всего одна характерная для данного атома постоянная
Выражая
через угол рассеяния согласно
получим эффективное торможение при рассеянии на все углы
(149,13)
Если
то можно выразить и в виде функции от наибольшей передаваемой падающим электроном атому энергии. В предыдущем параграфе было указано, что при
происходит ионизация атома, причем практически весь импульс
и энергия передаются одному атомному электрону.
Поэтому
связаны друг с другом, как импульс и энергия электрона, т. е.
Подставляя в
получим эффективное торможение при столкновениях, сопровождающихся передачей энергии
(149,14)
В заключение сделаем следующее замечание. Уровни энергии, дискретного спектра атома связаны в основном с возбуждениями одного (внешнего) электрона; уже возбуждение двух электронэв связано обычно с энергией, достаточной для ионизации атома. Поэтому в сумме интенсивностей осцилляторов переходы в состояния дискретного спектра составляют лишь долю порядка единицы; переходы же с ионизацией — порядка Z. Отсюда следует, что основную роль в торможении (тяжелыми атомами) играют столкновения, сопровождающиеся ионизацией.
Задача
Определить полное эффективное торможение электрона атомом водорода
единицы); при больших передачах энергии более быстрый из обоих сталкивающихся электронов принимается за первичный.
Решение. Когда первичный и вторичный электроны приобретают после столкновения сравнимые энергии, надо учитывать обменный эффект. Поэтому для торможения с передачей энергии от некоторого значения
до наибольшего
(принятое нами определение первичного электрона!) надо пользоваться сечением (148,17):
Складывая со (149,14), получим
(в атомных единицах).