Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 69. Самосогласованное полеУравнение Шредингера для атомов, содержащих более одного электрона, не может быть решено в аналитическом виде. В связи с этим приобретают значение приближенные методы вычисления энергий и волновых функций стационарных состояний атомов. Наиболее существенным из них является так называемый метод самосогласованного поля. Идея этого метода заключается в том, что каждый электрон в атоме рассматривается как движущийся в самосогласованном поле, создаваемом ядром вместе со всеми остальными электронами. Рассмотрим в качестве примера атом гелия, причем ограничимся теми его термами, в которых оба электрона находятся в
или антисимметризованным
произведением обеих функций в зависимости от того, имеем ли мы дело с состояниями с полным спином S = 0 или S = 1 . Будем рассматривать второе из них; тогда функции и Поставим себе целью определить такую функцию вида (69,2), которая бы являлась наилучшим приближением к истинной волновой функции атома. Для этого естественно исходить из вариационного принципа, допуская в нем конкурировать лишь функции вида (69,2) (излагаемый метод был предложен В. А. Фоком, 1930). Как мы знаем, уравнение Шредингера может быть получено из вариационного принципа
при дополнительном условии
(интегрирование производится по координатам обоих электронов в атоме гелия). Варьирование приводит к уравнению
откуда, при произвольной вариации волновой функции В методе же самосогласованного поля в (69,3) подставляется выражение (69,2) для Гамильтониан атома гелия имеет вид
(
где
Это и есть те окончательные уравнения, к которым приводит метод самосогласованного поля; их решение возможно, разумеется, лишь в численном виде. Аналогичным образом должен производиться вывод уравнений в более сложных случаях. Волновая функция атома, которая должна быть подставлена в интеграл вариационного принципа, составляется в виде линейной комбинации произведений волновых функций отдельных электронов. Эта комбинация должна быть выбрана так, чтобы, во-первых, ее перестановочная симметрия соответствовала полному спину S рассматриваемого состояния атома и, во-вторых, она должна соответствовать данному значению полного орбитального момента L атома. Пользуясь в вариационном принципе волновой функцией, обладающей должной перестановочной симметрией, мы тем самым производим учет обменного взаимодействия электронов в атоме. Более простые (но приводящие к менее точным результатам) уравнения получаются, если пренебречь обменным взаимодействием, а также и зависимостью энергии атома от L при данной электронной конфигурации (D. R. Hartree, 1928). Рассматривая снова, в качестве примера, атом гелия, мы можем тогда написать уравнения для волновых функций электронов непосредственно в виде обычных уравнений Шредингера
в которых
(и аналогично для
Для уточнения результатов, получаемых с помощью такого упрощенного метода, обменное взаимодействие и зависимость энергии от L могут быть учтены затем в качестве возмущения. Задачи1. Определить приближенно энергию основного уровня атома гелия и гелиеподобных ионов (ядро с зарядом Z и два электрона), рассматривая взаимодействие между электронами как возмущение. Решение. В основном состоянии иона оба электрона находятся в
Поправка первого приближения дается средним значением энергии взаимодействия электронов, взятым по состоянию с волновой функцией
{произведение двух водородных функций с
проще всего вычисляется как
(энергия распределения зарядов
Для атома гелия это дает 2. То же, с помощью вариационного принципа, аппроксимируя волновую функцию в виде произведения двух водородных функций с некоторым эффективным зарядом ядра. Решение. Вычисляем интеграл
с функцией
В результате получаем
Это выражение, как функция
Для атома гелия это дает Заметим, что волновая функция (1) с найденным значением
|
1 |
Оглавление
|