Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 105. Классификация молекулярных термовВолновая функция молекулы представляет собой произведение электронной волновой функции, волновой функции колебательного движения ядер и вращательной волновой функции. О классификации и типах симметрии этих функций в отдельности мы уже говорили. Теперь остается рассмотреть вопрос о классификации молекулярных термов в целом, т. е. о возможной симметрии полной волновой функции. Ясно, что задание симметрии всех трех множителей по отношению к тем или иным преобразованиям определяет также и симметрию произведения по отношению к этим же преобразованиям. Для полной характеристики симметрии состояния надо еще указать поведение полной волновой функции при одновременной инверсии координат всех частиц (электронов и ядер) в молекуле. Состояние называют отрицательным или положительным, смотря по тому, меняет ли волновая функция свой знак или остается неизменной при этом преобразовании. Необходимо, однако, иметь в виду, что характеристика состояния по отношению к инверсии имеет смысл только для молекул, не обладающих стереоизомерами. Наличие стереоизомерии означает, что при инверсии молекула принимает конфигурацию, которая никаким поворотом в пространстве не может быть совмещена с исходной (молекулы «правой» и «левой» модификаций вещества). Поэтому волновые функции, получающиеся друг из друга при инверсии, при наличии стереоизомерии относятся по существу к различным молекулам и сравнивать их не имеет смысла. Мы видели в § 86, что у двухатомных молекул спин ядер оказывает существенное косвенное влияние на схему молекулярных термов, определяя кратности их вырождения, а в некоторых случаях вовсе запрещая уровни той или иной симметрии. То же самое имеет место у многоатомных молекул. Однако здесь исследование вопроса значительно сложнее и требует применения методов теории групп в каждом конкретном случае. Идея метода заключается в следующем. Полная волновая функция должна содержать, наряду с координатной частью (которую мы до сих пор только и рассматривали), также и спиновый множитель, являющийся функцией от проекций спинов всех ядер на какое-либо выбранное направление в пространстве. Проекция а спина ядра пробегает Для характеров
где произведение берется по группам атомов, меняющихся друг с другом местами при данном преобразовании G (по одному множителю в произведении от каждой группы). Нас, однако, интересует не столько симметрия спиновой функции, сколько симметрия координатной волновой функции (речь идет о симметрии по отношению к перестановкам координат ядер при неизменных координатах электронов). Но эти симметрии непосредственно связаны друг с другом тем, что полная волновая функция должна оставаться неизменной или менять знак при перестановке каждой пары ядер, подчиняющихся соответственно статистике Бозе или Ферми (другими словами, должна умножаться на Вводя соответствующий множитель в характеры (105,1), мы получим систему характеров j (G) представления, содержащего в себе все неприводимые представления, по которым преобразуются координатные волновые функции:
( Каждый тип симметрии состояний связан с определенными значениями суммарных спинов групп эквивалентных ядер в молекуле (т. е. групп ядер, меняющихся друг с другом местами при каких-либо преобразованиях симметрии молекулы). Связь эта не взаимно однозначна: каждый тип симметрии состояний может осуществляться, вообще говоря, с различными значениями спинов групп эквивалентных ядер. Установление этой связи в каждом конкретном случае тоже возможно с помощью методов теории групп. Рассмотрим в качестве примера молекулу типа асимметричного волчка — молекулу этилена Выберем систему координат, как указано на рис. 43, ж (ось
Разлагая это представление на неприводимые части, найдем, что в нем содержатся следующие неприводимые представления группы Полученная классификация состояний молекулы этилена относится к симметрии полной (координатной) волновой функции, содержащей электронную, колебательную и вращательную части. Обычно, однако, представляет интерес подходить к этим результатам с другой точки зрения. Именно, зная возможные симметрии полной волновой функции, можно непосредственно найти, какие вращательные уровни возможны (и с какими статистическими весам!) при том или другом заданном электронном и колебательном состоянии. Рассмотрим, например, вращательную структуру низшего колебательного уровня (колебания не возбуждены) нормального электронного терма, предполагая электронную волновую функцию нормального состояния полностью симметричной (что имеет место практически для всех многоатомных молекул). Тогда симметрия полной волновой функции по отношению к поворотам вокруг осей симметрии совпадает с симметрией вращательной волновой функции. Сопоставляя с полученными выше результатами, мы приходим, следовательно, к выводу, что у молекулы этилена вращательные уровни типов А и Как и у двухатомных молекул (см. конец § 86), ввиду чрезвычайной слабости взаимодействия ядерных спинов с электронами, переходы между состояниями молекулы этилена с различной ядерной симметрией практически не имеют места. Поэтому молекулы, находящиеся в этих состояниях, ведут себя как различные модификации вещества, так что этилен Рассмотрим еще один пример — молекулу аммиака
Оно содержит следующие неприводимые представления группы Вращательные уровни симметричного волчка классифицируются (при данном J) по значениям квантового числа k. Рассмотрим, как и в предыдущем примере, вращательную структуру нормального электронного и колебательного состояний молекулы Вращательные волновые функции с При
Это представление приводимо и разбивается на представления Для того чтобы полная волновая функция относилась к представлению Наконец, проекции момента
Для того чтобы полная волновая функция имела симметрию Суммируя эти результаты, получаем следующую таблицу возможных состояний при различных значениях квантового числа k для нормального электронного и колебательного терма молекулы
При заданных J и k уровни энергии молекулы Величина расщепления пропорциональна вероятности прохождения атомов через «потенциальный барьер», разделяющий обе конфигурации молекулы. Хотя в молекуле аммиака, благодаря указанным выше ее свойствам, эта вероятность сравнительно велика, но все же величина расщепления мала Пример молекулы типа шарового волчка разобран в задаче 5 к этому параграфу.
Рис. 44 Задачи1. Установить связь между симметрией состояния молекулы Решение. Суммарный спин четырех ядер Н может иметь значения Значению
Первое из этих представлений есть единичное представление Значение Наконец, значение 2. Определить типы симметрии полных (координатных) волновых функций и статистические веса соответствующих уровней для молекул Решение. Тем же способом, который был применен в тексте к молекуле
Решение. Подобно тому как это было сделано в тексте для молекулы Для нормального электронного и колебательного терма при различных значениях квантового числа k возможны следующие состояния:
4. То же для молекулы Решение. Возможны состояния следующих типов: Для нормального электронного и колебательного терма получаются следующие состояния:
5. То же для молекулы метана Решение. Молекула относится к типу шарового волчка и имеет симметрию Вращательные состояния шарового волчка классифицируются по значениям J полного момента.
В нем содержатся следующие неприводимые представления группы О:
|
1 |
Оглавление
|