Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 94. Представления группРассмотрим какую-либо группу симметрии, и пусть
где О совокупности этих постоянных говорят, как о матрице преобразования. В этой связи удобно рассматривать элементы G группы как операторы, воздействующие на функции, так что можно будет написать
Функции
Произведению двух элементов G и Н группы соответствует матрица, определяющаяся по матрицам G и Н с помощью обычного правила перемножения матриц (11, 12)
О совокупности матриц всех элементов группы говорят, как о представлении группы. Функции же Рассмотрим интегралы Произведя над функциями
мы получим новую систему функций Взяв в качестве базиса представления функции мы будем иметь новое представление той же размерности. Такие представления, которые получаются друг из друга путем линейного преобразования функций из базиса, называются эквивалентными, они, очевидно, не являются существенно различными. Матрицы эквивалентных представлений связаны друг с другом простым соотношением: согласно (12,7) матрица оператора
в старом представлении. Сумма диагональных элементов (т. е. след) матрицы, представляющей элемент G группы, называется ее характером; мы будем обозначать характеры посредством Если понимать под S в (94,5) элемент группы, связывающий сопряженные элементы G и G, то мы придем к результату, что в каждом данном представлении группы характеры матриц, представляющих элементы одного класса, одинаковы. Единичному элементу группы Е соответствует тождественное преобразование. Поэтому представляющая его матрица во всяком представлении диагональна, причем диагональные элементы равны единице. Характер
Рассмотрим некоторое представление размерности f. Может оказаться, что в результате соответствующего линейного преобразования (94,4) функции базиса разбиваются на наборы по В таком случае говорят, что данное представление приводимо. Если же число преобразующихся друг через друга функций базиса не может быть уменьшено никаким их линейным преобразованием, то осуществляемое ими представление называется неприводимым. Всякое приводимое представление может быть, как говорят, разложено на неприводимые представления. Это значит, что соответствующим линейным преобразованием функции базиса разбиваются на ряд наборов, из которых каждый преобразуется при воздействии элементов группы по какому-либо неприводимому представлению. При этом может оказаться, что несколько различных наборов преобразуется по одному и тому же неприводимому представлению; в таком случае говорят, что это неприводимое представление содержится в приводимом соответствующее число раз. Неприводимые представления являются существенной характеристикой группы и играют основную роль во всех квантовомеханических применениях теории групп. Укажем главные свойства неприводимых представлений Можно показать, что число различных неприводимых представлений группы равно числу Матричные элементы неприводимых представлений удовлетворяют ряду соотношений ортогональности. Прежде всего для двух различных неприводимых представлений имеют место соотношения
где
т. е. отличны от нуля лишь суммы квадратов модулей матричных элементов
Соотношения (94,7)-(94,8) можно записать вместе в виде
В частности, отсюда можно получить важное соотношение ортогональности для характеров представлений; суммируя обе стороны равенства (94,9) по парам индексов
При
— сумма квадратов модулей характеров неприводимого представ ления равна порядку группы. Заметим, что этим соотношением можно пользоваться как критерием неприводимости представления — для приводимого представления эта сумма во всяком случае больше g (так она равна Из (94,10) следует также, что равенство характеров двух неприводимых представлений является не только необходимым, но и достаточным условием их эквивалентности. Поскольку характеры, относящиеся к элементам одного класса, одинаковы, то в сумме (94,10) в действительности имеется всего
где суммирование производится по Поскольку число неприводимых представлений совпадает с числом классов, то величины Из имеющих место соотношений ортогональности по первому индексу
Среди неприводимых представлений всякой группы всегда имеется одно тривиальное, осуществляющееся одной функцией базиса, инвариантной по отношению ко всем преобразованиям группы. Это одномерное представление называется единичным; все характеры в нем равны единице. Если в соотношении ортогональности (94,10) или (94,11) одно из представлений — единичное, то для другого получим
т. е. сумма характеров всех элементов группы для всякого неединичного представления равна нулю. Соотношение (94,10) позволяет очень просто произвести разложение всякого приводимого представления на неприводимые, если известны характеры тех и других. Пусть
Умножая это равенство на
Рассмотрим представление размерности
сумма квадратов размерностей неприводимых представлений группы равна ее порядку Отсюда следует, в частности, что у абелевых групп (где Укажем также, без доказательства, что размерности неприводимых представлений группы являются делителями ее порядка. Фактическое разложение регулярного представления на неприводимые части осуществляется формулой
Легко проверить, что функции
т. е. являются базисом Произвольную функцию
Для доказательства подставим вторую формулу в первую и, произведя суммирование по
Заметив, что размерности Составляя произведения мы получим систему
то
отсюда для характеров, которые обозначим как
т. е.
Оба перемножаемые неприводимые представления могут, в частности, совпадать; в этом случае мы имеем два различных набора функций
Это приводимое представление можно сразу разбить на два представления меньшей размерности (но, вообще говоря, все еще приводимые). Одно из них осуществляется Для определения характеров симметричного произведения пишем
Отсюда имеем для характера
Но
таким образом, окончательно получим формулу
позволяющую определить характеры симметричного произведения представления самого на себя по характерам исходного представления. Совершенно аналогичным образом найдем для характеров антисимметричного произведения формулу 1)
Если функции Отметим важное для дальнейшего свойство прямых произведений. Разложение прямого произведения двух различных неприводимых представлений на неприводимые части содержит единичное представление (причем один только раз), лишь если перемножаемые представления являются комплексно сопряженными. В случае вещественных представлений единичное представление содержится лишь в прямом произведении неприводимого представления самого на себя (причем, очевидно, в его симметричной части). Действительно, чтобы узнать, содержится ли в представлении (94,21) единичное представление, надо (согласно (94,16)) просто просуммировать его характеры по G (и разделить результат на порядок группы g). Сделанное утверждение следует тогда прямо из соотношений ортогональности (94,10). Наконец, сделаем несколько замечаний о неприводимых представлениях группы, являющейся прямым произведением двух других групп (не смешивать с прямым произведением двух представлений одной и той же группы!). Если функции Характеры этого представления получаются перемножением соответствующих характеров исходных представлений (ср. вывод формулы (94,21)); элементу
Перемножив, таким образом, друг с другом все неприводимые представления групп А и В, мы получим все неприводимые представления группы
|
1 |
Оглавление
|