Главная > Теоретическая физика. Т. III. Квантовая механика (нерелятивистская теория).
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ГЛАВА Vlll. СПИН

§ 54. Спин

Как в классической, так и в квантовой механике закон сохранения момента возникает как результат изотропии пространства по отношению к замкнутой системе. Уже в этом проявляется связь момента со свойствами симметрии по отношению к вращениям. Но в квантовой механике эта связь становится в особенности глубокой, делаясь по существу основным содержанием понятия о моменте, тем более, что классическое определение момента частицы как произведения теряет здесь свой непосредственный смысл в виду одновременной неизмеримости радиуса-вектора и импульса.

Мы видели в § 28, что задание значений l к определяет угловую зависимость волновой функции частицы, а тем самым — все ее свойства симметрии по отношению к вращениям. В наиболее общем виде формулировка этих свойств сводится к указанию закона преобразования волновых функций при поворотах системы координат.

Неизменной волновая функция системы частиц (с заданными значениями момента L и его проекции М) остается лишь при повороте системы координат вокруг оси . Всякий же поворот, меняющий направление оси , приводит к тому, что проекция момента на ось уже не будет иметь определенного значения. Это значит, что в новых координатных осях волновая функция превратится, вообще говоря, в суперпозицию (линейную комбинацию) функций, отвечающих различным возможным (при заданном L) значениям М. Можно сказать, что при поворотах системы координат функций преобразуются друг через друга. Закон этого преобразования, т. е. коэффициенты суперпозиции (как функции углов поворота координатных осей), полностью определяется заданием значения L. Таким образом, момент приобретает смысл квантового числа, классифицирующего состояния системы по их трансформационным свойствам по отношению к вращениям системы координат.

Этот аспект понятия момента в квантовой механике в особенности существен в связи с тем, что он не связан непосредственно с явной зависимостью волновых функций от углов; закон их преобразования друг через друга может быть сформулирован сам по себе, без ссылки на эту зависимость.

Рассмотрим сложную частицу (скажем, атомное ядро), покоящуюся как целое и находящуюся в определенном внутреннем состоянии. Помимо определенной внутренней энергии она обладает также и определенным по своей величине L моментом, связанным с движением частиц внутри нее; этот момент может еще иметь 2L + 1 различных ориентаций в пространстве. Другими словами, при рассмотрении движения сложной частицы как целого мы должны, наряду с ее координатами, приписывать ей еще и одну дискретную переменную — проекцию ее внутреннего момента на некоторое избранное направление в пространстве.

Но при указанном выше понимании смысла момента становится несущественным вопрос о его происхождении, и мы приходим естественным образом к представлению о «собственном» моменте, который должен быть приписан частице вне зависимости от того, является ли она «сложной» или «элементарной».

Таким образом, в квантовой механике элементарной частице следует приписывать некоторый «собственный» момент, не связанный с ее движением в пространстве. Это свойство элементарных частиц является специфически квантовым (исчезающим при переходе к пределу и поэтому принципиально не допускает классической интерпретации.

Собственный момент частицы называют ее спином, в отличие от момента, связанного с движением частицы в пространстве, о котором говорят как об орбитальном моменте. Речь может идти при этом как об элементарной частице, так и о частице, хотя и составной, но ведущей себя в том или ином рассматриваемом круге явлений как элементарная (например, об атомном ядре). Спин частицы (измеренный, как и орбитальный момент, в единицах й) будем обозначать посредством s.

Для частиц, обладающих спином, описание состояния с помощью волновой функции должно определять не только вероятности ее различных положений в пространстве, но и вероятности различных возможных ориентаций ее спина.

Другими словами, волновая функция должна зависеть не только от трех непрерывных переменных — координат частицы, но и от одной дискретной спиновой переменной, указывающей значение проекции спина на некоторое избранное направление в пространстве (ось ) и пробегающей ограниченное число дискретных значений (которые мы будем обозначать далее буквой ).

Пусть — такая волновая функция. По существу она представляет собой совокупность нескольких различных функций координат, отвечающих различным значениям а; об этих функциях мы будем говорить как о спиновых компонентах волновой функции. При этом интеграл

определяет вероятность частице иметь определенное значение а. Вероятность же частице находиться в элементе Объема имея произвольное значение а, есть

Квантовомеханический оператор спина при применении его к волновой функции действует именно на спиновую переменную . Другими словами, он каким-то образом преобразует друг через друга компоненты волновой функции. Вид этого оператора будет установлен ниже. Но, уже исходя из самых общих соображений, легко убедиться в том, что операторы удовлетворяют таким же условиям коммутации, как и операторы орбитального момента.

Оператор момента в основном совпадает с оператором бесконечно малого поворота. При выводе в § 26 выражения для оператора орбитального момента мы рассматривали результат применения операции поворота к функции координат. В случае спинового момента такой вывод теряет смысл, поскольку оператор спина действует на спиновую переменную, а не на координаты. Поэтому для получения искомых соотношений коммутации мы должны рассматривать операцию бесконечно малого поворота в общем виде, как поворот системы координат. Производя последовательно бесконечно малые повороты вокруг оси х и оси у, а затем вокруг этих же осей в обратном порядке, легко убедиться непосредственным вычислением, что разница между результатами обеих этих операций эквивалентна бесконечно малому повороту вокруг оси (на угол, равный произведению углов поворота вокруг осей х и у). Мы не станем производить здесь этих простых вычислений, в результате которых вновь получаются обычные соотношения коммутации между операторами компонент момента импульса, которые, следовательно, должны иметь место и для операторов спина:

со всеми вытекающими из них физическими следствиями.

Соотношения коммутации (54,1) дают возможность определить возможные значения абсолютной величины и компонент спина. Весь вывод, произведенный в § 27 (формулы (27,7)-(27,9)), был основан только на соотношениях коммутации и потому полностью применим и здесь; надо только вместо L в этих формулах подразумевать s. Из формул (27,7) следует, что собственные значения проекции спина образуют последовательность чисел, отличающихся на единицу. Мы не можем, однако, теперь утверждать, что сами эти значения должны быть целыми, как это имело место для проекции орбитального момента (приведенный в начале § 27 вывод здесь неприменим, поскольку он основан на выражении (26,14) для оператора , специфическом для орбитального момента).

Далее, последовательность собственных значений ограничена сверху и снизу значениями, одинаковыми по абсолютной величине и противоположными по знаку, которые мы обозначим посредством Разность между наибольшим и наименьшим значениями должна быть целым числом или нулем. Следовательно, число s может иметь значения 0, 1/2, 1, 3/2, ...

Таким образом, собственные значения квадрата спина равны

где s может быть либо целым числом (включая значение нуль), либо полуцелым. При заданном s компонента спина может пробегать значения — всего значений. Соответственно этому, и волновая функция частицы со спином s имеет компонент

Опыт показывает, что большинство элементарных частиц — электроны, позитроны, протоны, нейтроны, мезоны и все гипероны — обладают спином 1/2. Кроме того, существуют элементарные частицы — -мезоны и -мезоны, — обладающие спином 0.

Полный момент импульса частицы складывается из ее орбитального момента 1 и спина s. Их операторы, действуя на функции совершенно различных переменных, разумеется, коммутативны друг с другом.

Собственные значения полного момента

определяются тем же правилом «векторной модели», что и сумма орбитальных моментов двух различных частиц (§ 31).

Именно, при заданных значениях полный момент может иметь значения . Так, у электрона (спин 1/2) с отличным от нуля орбитальным моментом l полный момент может быть равен ; при момент имеет, конечно, лишь одно значение

Оператор полного момента J системы частиц равен сумме операторов моментов каждой из них, так что его значения опредег ляются снова правилами векторной модели. Момент J можно представить в виде

где S можно назвать полным спином, а L — полным орбитальным моментом системы.

Отметим, что если полный спин системы — полуцелый (или целый), то то же самое будет иметь место и для полного момента, поскольку орбитальный момент всегда целый. В частности, если система состоит из четного числа одинаковых частиц, то ее полный спин во всяком случае целый, а потому будет целым и полный момент.

Операторы полного момента частицы j (или системы частиц J) удовлетворяют тем же правилам коммутации, что и операторы орбитального момента или спина, поскольку эти правила являются вообще общими правилами коммутации, справедливыми для всякого момента импульса. Следующие из правил коммутации формулы (27,13) для матричных элементов момента тоже справедливы для всякого момента, если матричные элементы определять по отношению к собственным функциям этого же момента. Остаются справедливыми (с соответствующим изменением обозначений) также и формулы (29,7)-(29,10) для матричных элементов произвольных векторных величин.

Задача

Частица со спином 1/2 находится в состоянии с определенным значением Определить вероятности возможных значений проекции спина на ось , наклоненную под углом к оси .

Решение. Средний вектор спина s направлен, очевидно, по оси и равен по величине 1/2. Проедируя его на ось , найдем, чего среднее значение спина в направлении гесть . С другой стороны, имеем где — вероятности значений . Учитывая также, что найдем

Categories

1
Оглавление
email@scask.ru