Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
ГЛАВА Vlll. СПИН§ 54. СпинКак в классической, так и в квантовой механике закон сохранения момента возникает как результат изотропии пространства по отношению к замкнутой системе. Уже в этом проявляется связь момента со свойствами симметрии по отношению к вращениям. Но в квантовой механике эта связь становится в особенности глубокой, делаясь по существу основным содержанием понятия о моменте, тем более, что классическое определение момента частицы как произведения Мы видели в § 28, что задание значений l к Неизменной Этот аспект понятия момента в квантовой механике в особенности существен в связи с тем, что он не связан непосредственно с явной зависимостью волновых функций от углов; закон их преобразования друг через друга может быть сформулирован сам по себе, без ссылки на эту зависимость. Рассмотрим сложную частицу (скажем, атомное ядро), покоящуюся как целое и находящуюся в определенном внутреннем состоянии. Помимо определенной внутренней энергии она обладает также и определенным по своей величине L моментом, связанным с движением частиц внутри нее; этот момент может еще иметь 2L + 1 различных ориентаций в пространстве. Другими словами, при рассмотрении движения сложной частицы как целого мы должны, наряду с ее координатами, приписывать ей еще и одну дискретную переменную — проекцию ее внутреннего момента на некоторое избранное направление в пространстве. Но при указанном выше понимании смысла момента становится несущественным вопрос о его происхождении, и мы приходим естественным образом к представлению о «собственном» моменте, который должен быть приписан частице вне зависимости от того, является ли она «сложной» или «элементарной». Таким образом, в квантовой механике элементарной частице следует приписывать некоторый «собственный» момент, не связанный с ее движением в пространстве. Это свойство элементарных частиц является специфически квантовым (исчезающим при переходе к пределу Собственный момент частицы называют ее спином, в отличие от момента, связанного с движением частицы в пространстве, о котором говорят как об орбитальном моменте. Речь может идти при этом как об элементарной частице, так и о частице, хотя и составной, но ведущей себя в том или ином рассматриваемом круге явлений как элементарная (например, об атомном ядре). Спин частицы (измеренный, как и орбитальный момент, в единицах й) будем обозначать посредством s. Для частиц, обладающих спином, описание состояния с помощью волновой функции должно определять не только вероятности ее различных положений в пространстве, но и вероятности различных возможных ориентаций ее спина. Другими словами, волновая функция должна зависеть не только от трех непрерывных переменных — координат частицы, но и от одной дискретной спиновой переменной, указывающей значение проекции спина на некоторое избранное направление в пространстве (ось Пусть
определяет вероятность частице иметь определенное значение а. Вероятность же частице находиться в элементе Объема
Квантовомеханический оператор спина при применении его к волновой функции действует именно на спиновую переменную Оператор момента в основном совпадает с оператором бесконечно малого поворота. При выводе в § 26 выражения для оператора орбитального момента мы рассматривали результат применения операции поворота к функции координат. В случае спинового момента такой вывод теряет смысл, поскольку оператор спина действует на спиновую переменную, а не на координаты. Поэтому для получения искомых соотношений коммутации мы должны рассматривать операцию бесконечно малого поворота в общем виде, как поворот системы координат. Производя последовательно бесконечно малые повороты вокруг оси х и оси у, а затем вокруг этих же осей в обратном порядке, легко убедиться непосредственным вычислением, что разница между результатами обеих этих операций эквивалентна бесконечно малому повороту вокруг оси
со всеми вытекающими из них физическими следствиями. Соотношения коммутации (54,1) дают возможность определить возможные значения абсолютной величины и компонент спина. Весь вывод, произведенный в § 27 (формулы (27,7)-(27,9)), был основан только на соотношениях коммутации и потому полностью применим и здесь; надо только вместо L в этих формулах подразумевать s. Из формул (27,7) следует, что собственные значения проекции спина образуют последовательность чисел, отличающихся на единицу. Мы не можем, однако, теперь утверждать, что сами эти значения должны быть целыми, как это имело место для проекции Далее, последовательность собственных значений Таким образом, собственные значения квадрата спина равны
где s может быть либо целым числом (включая значение нуль), либо полуцелым. При заданном s компонента Опыт показывает, что большинство элементарных частиц — электроны, позитроны, протоны, нейтроны, мезоны и все гипероны Полный момент импульса частицы складывается из ее орбитального момента 1 и спина s. Их операторы, действуя на функции совершенно различных переменных, разумеется, коммутативны друг с другом. Собственные значения полного момента
определяются тем же правилом «векторной модели», что и сумма орбитальных моментов двух различных частиц (§ 31). Именно, при заданных значениях Оператор полного момента J системы частиц равен сумме операторов моментов
где S можно назвать полным спином, а L — полным орбитальным моментом системы. Отметим, что если полный спин системы — полуцелый (или целый), то то же самое будет иметь место и для полного момента, поскольку орбитальный момент всегда целый. В частности, если Операторы полного момента частицы j (или системы частиц J) удовлетворяют тем же правилам коммутации, что и операторы орбитального момента или спина, поскольку эти правила являются вообще общими правилами коммутации, справедливыми для всякого момента импульса. Следующие из правил коммутации формулы (27,13) для матричных элементов момента тоже справедливы для всякого момента, если матричные элементы определять по отношению к собственным функциям этого же момента. Остаются справедливыми (с соответствующим изменением обозначений) также и формулы (29,7)-(29,10) для матричных элементов произвольных векторных величин. ЗадачаЧастица со спином 1/2 находится в состоянии с определенным значением Решение. Средний вектор спина s направлен, очевидно, по оси
|
1 |
Оглавление
|