Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
1.7. Дальнейшие замечания об интегрировании дифференциальных уравненийПонятие «интегрирования» дифференциального уравнения является, несомненно, весьма тонким. Для большинства рассмотренных до сих пор систем второго порядка существование постоянного первого интеграла (в консервативных случаях это механическая энергия) позволяло понизить на единицу порядок уравнения, сводя тем самым задачу к отысканию решения в «квадратурах». Выражения типа «точное решение» или «аналитическое решение» дифференциального уравнения использовались здесь (равно как и в других работах) весьма произвольно. Вопрос о том, что подразумевается под этими удобными выражениями, безусловно не является неуместным. В конце концов, можно ли было до появления эллиптических функций не считать неразрешимыми простые нелинейные дифференциальные уравнения кубического осциллятора или маятника? Правомерен вопрос, что происходит «за пределами» эллиптических функций, скажем, с уравнениями типа (1.2.4), когда показатель степени при больше 3. В этом случае, по крайней мере, еще существует интеграл движения (энергия), позволяющий перейти к квадратурам — такие интегралы называются гиперэмипттескими интегралами. Обращение, однако, становится в этом случае гораздо более сложным, и в игру вступают многие результаты из алгебраической геометрии. В случае неконсервативных систем второго порядка вопрос об «интегрировании» становится более запутанным. В некоторых случаях, обсуждавшихся в разделе 1.5, возможно было отыскать зависящий от времени интеграл, который позволял понизить порядок. Но это, как легко понять, были весьма специальные случаи. Затруднения иного рода связаны с системами уравнений типа
известными как уравнения Пенлеве первого и второго типов соответственно. Для них неизвестны первые интегралы, и они не могут быть «проинтегрированы в квадратурах». И хотя очевидно, что уравнения, подобные этим, имеют «решения», нетривиальным и спорным остается вопрос, в какой степени эти решения могут быть представлены «аналитически» — в противоположность численному результату. Фактором, существенным при обсуждении этого вопроса, является аналитическая структура решения, т. е. поведение решения в комплексной плоскости. К счастью, целый ряд важных свойств, таких как возможные сингулярности решения, может быть определен непосредственно по виду уравнений движения, без обращения к точному решению (которое мы, естественно, можем и «не знать»). Может быть и так, что аналитическая структура особенно «проста» и соответствующее уравнение оказывается в некотором смысле «интегрируемым». Эта возможность будет обсуждаться в главе 8. Может быть вопрос интегрируемости автономных систем второго порядка в определенном смысле довольно академичен. В этих случаях движение всегда ограничено двумерной фазовой плоскостью и никогда не проявляет сколь-нибудь сложного или хаотического поведения. Когда фазовое пространство приобретает третье измерение (или более), что может иметь место в случае неавтономных систем второго порядка или в случае автономных систем третьего порядка, вопрос об интегрируемости становится гораздо более содержательным вследствие возможности хаотического поведения. Здесь важную роль приобретает существование «интегралов движения», поскольку они, как мы видели, налагают геометрические ограничения на фазовый поток. Рассмотрим следующую автономную систему третьего порядка:
Прежде всего заметим, из (1.7.3а) и (1.7.3в) следует, что
и мы видим, таким образом, что траектории в трехмерном фазовом пространстве
Эта система второго порядка в свою очередь может быть сведена к системе первого порядка с помощью второго интеграла
который также можно рассматривать как (другое) геометрическое ограничение на фазовый поток. Уравнение (1.7.6) можно проинтегрировать в терминах эллиптических функций Якоби. Таким образом, отыскание двух интегралов свести решение исходной системы третьего порядка к единственной «квадратуре» — в этом смысле можно считать, что система «проинтегрирована полностью». Теперь рассмотрим систему
где а и Простые (и тщательно подобранные!) примеры (1.7.3) и (1.7.7) порождают много фундаментальных вопросов. Первый из них — каким образом находить интегралы движения (если они существуют?). По мере того, как порядок уравнений возрастает, а их функциональный вид усложняется, эта задача становится очень сложной. Действительно, не существует сколь-нибудь систематической процедуры для ее решения — приходится полагаться на опыт, на удачу и, в безнадежных ситуациях, на провидение! Может оказаться, как это вытекает из одной блестящей работы русского математика Софьи Ковалевской, написанной сто лет назад, что существование интегралов может быть связано с аналитической структурой дифференциальных уравнений. Другой фундаментальный вопрос состоит в том, какое именно число интегралов необходимо, чтобы поэтапно осуществить полное «интегрирование». Именно здесь важно отличать различные классы динамических систем. Для гамильтоновых систем (к которым (1.7.3) и (1.7.7) не относятся) имеется ряд весьма сильных результатов. Как будет показано в следующей главе, если система имеет столько же интегралов
|
1 |
Оглавление
|