Главная > Ассоциативные алгебры
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

§ 16.5. Некоммутативные определители

В этом параграфе завершается построение определителя для группы а также заканчивается подготовка к изучению группы в § 6.

Ниже используются обозначения § 4. В частности, подгруппа группы порожденная трансвекциями Мы уже показали, что такая подгруппа в что Чтобы выяснить взаимосвязь между этими группами, следует рассмотреть группу

Лемма а. Если то тогда и только тогда, когда лей, где коммутант группы

Доказательство. Предположим, что и покажем, что Достаточно рассмотреть случай

Так как каждый элемент группы является произведением коммутаторов, то в силу утверждения Сложнее доказать, что из следует Это эквивалентно существованию гомоморфизма определителя группы в группу Удобно распространить наши обозначения на случай Положим если Для обозначим через естественный гомоморфизм группы на группу Мы завершим доказательство леммы, построив отображение для такое, что влечет за собой

Этого будет достаточно для завершения доказательства, поскольку из следует, что кроме того, Если определим векторы-строки Пусть первая строка матрицы Она удовлетворяет условию

В частности,

Если то в силу равенства леммы следует, что для каждого

Положим

где символ указывает на то, что строка в матрице отсутствует. Если то определено отображение определителя и Наше определение отображения 9 мотивировано следующим наблюдением: где индексы таковы, что

В силу леммы выбор индексов и I не имеет значения; достаточно показать, что в предположении Согласно равенству (4), Поэтому с помощью элементарных преобразований строк первого типа получаем

Если матрица у получена из матрицы перестановкой строк с последующим умножением новой 6-й строки

на —1, то Следовательно,

ввиду первой части доказательства. Таким образом, утверждение (5) доказано. Из определения отображения 9 вытекает, что условие (2) имеет место. Для доказательства условия (1) можно предположить, что Следовательно, строка матрицы имеет вид а остальные ее строки совпадают с соответствующими строками матрицы а. В силу равенства так что первая строка матрицы имеет вид Есль для некоторого то В этом случае в силу утверждения (5). (Если то Если для всех индексов то в силу равенства В этом случае и в силу утверждения

Предложение а. Пусть алгебра с делением, Тогда коммутант группы порождается трансвекциями Кроме того,

Доказательство. Согласно утверждению и лемме подгруппа группы такая, что Лемма а эквивалентна утверждению о Совпадении групп Поэтому ввиду следствия 16.4а из теоремы об изоморфизме вытекает, что Таким образом, (поскольку группа абелева). В силу леммы 16.4а

Ввиду упр. 3 из § 16.4 это предложение справедливо и в случае при условии, что Второе утверждение предложения справедливо без ограничений на степень

Следствие а. Пусть алгебра с делением и Тогда существует однозначно определенный гомоморфизм

такой, что где естественный гомоморфизм группы на группу

Явное определение а таково: представим матрицу а в виде где тогда В силу леммы и леммы а этим способом определяется единственный гомоморфизм, удовлетворяющий условию

Отображение было введено Дьедонне в его исследованиях по классическим группам. В случае когда алгебра является полем, отображение совпадает с обычным отображением определителя. Ядро отображения называется специальной линейной группой и обозначается через Если то в силу предложения В частности,

Лемма Если где алгебра с делением, то

Доказательство. Пусть расщепляющее представление алгебры Определим отображение по правилу где последняя матрица рассматривается как блочная. Ясно, что расщепляющее представление А. Следовательно, если

Предложение Пусть где алгебра с делением, такая, что Тогда существуют изоморфизмы такие, что следующая диаграмма коммутативна:

Доказательство. В силу леммы а -корректно определенный инъективный гомоморфизм групп По лемме сюръективный гомоморфизм. Из леммы вытекает, что средний квадрат диаграммы коммутативен. Поэтому остальные квадраты коммутативны и гомоморфизм является изоморфизмом.

Следствие Пусть где алгебра с делением. Тогда

Доказательство. Предположим, что Пусть Представим матрицу а в виде где Тогда Случай тривиален.

Следствие с. Предположим, что Если алгебры, такие, что то В частности,

Упражнения

(см. скан)

1
Оглавление
email@scask.ru