Главная > Автоматическое регулирование. Теория и элементы систем
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

1. МАТЕМАТИЧЕСКИЕ ОСНОВЫ ТЕОРИИ ИМПУЛЬСНЫХ УСТРОЙСТВ

Рассмотрим часть структурной схемы наиболее общей импульсной системы регулирования (рис. XV.4), состоящей из преобразователя «аналог—код» импульсное устройство); ЦВМ (импульсное устройство); преобразователя «код—аналог» в который входят импульсные и непрерывные элементы.

Блок-схема участка схемы с импульсными устройствами изображена на рис. XV.5, а. Преобразователь выполняет квантование во времени входного сигнала с постоянной частотой (или периодом Т). Такое импульсное устройство (рис. XV.6, а) пропускает сигнал лишь в очень короткий промежуток времени и не пропускает сигнал в течение остального периода времени Т. На рис. XV.6, б показаны сигналы во временной

Рис. XV.4. Блок-схема импульсной системы автоматического регулирования с ЦВМ

Рис. XV.5. Участок схемы импульсной системы автоматического регулирования

Рис. XV.6. Виды сигналов на входе и выходе импульсного устройства

области в различных участках импульсного устройства. Как видно, на выходе импульсного устройства образуется последовательность узких импульсов, огибающая которых соответствует входному сигналу. Таким образом, импульсное устройство можно рассматривать как модулятор, преобразующий непрерывный сигнал в последовательность импульсов, когда длительность импульсов

Преобразователь состоит из собственно модулятора, куда поступает сигнал и блока последовательности единичных импульсов и (см. рис. XV.5, б). На выходе модулятора образуется дискретный сигнал

Если считать, что широта импульсов то на выходе модулятора имеем последовательность импульсов, амплитуды которых равны значениям непрерывной функции в тактовые моменты времени:

Это положение упрощает математический аппарат импульсных систем регулирования. В этом случае единичную немодулированную последовательность импульсов с представим в виде

Подставляя выражение (XV.2) в формулу (XV. 1), получим

или

Выражение (XV.4) записано через оригиналы функций. Применяя к нему дискретное преобразование Лапласа вида

найдем

В выражении (XV.6)

поэтому

Перейдем к рассмотрению соответствующих математических зависимостей в частотной области. Для этого воспользуемся рядом Фурье. Тогда немодулированную последовательность импульсов можно записать в виде

В соответствии с этим выражение (XV.3) представим как

Умножим обе части равенства (XV.10) на после чего проинтегрируем их в пределах от 0 до

откуда получим

или, введя обозначение

Из выражения (XV. 13) видно, что дискретный сигнал представляет собой бесконечное число входных сигналов.

Для более наглядного уяснения полученных математических зависимостей рассмотрим прохождение сигналов через схему импульсных устройств, показанную на рис. XV.5, б. Цифровую вычислительную машину представим в виде фильтра низких частот, а преобразователь в виде сглаживающего фильтра. Будем также считать, что на ЦВМ реализуется программа дифференцирования:

Пользуясь этими положениями, проанализируем прохождение сигналов через схему, изображенную на рис. XV.5, б, во временной (рис. XV.7, а— д) и частотной (рис. XV.7, е - к) областях. Непрерывный сигнал (рис. XV.7, а), пройдя через модулятор, на который поступает также последовательность единичных импульсов (рис. XV.7, б), преобразуется в дискретный сигнал (рис. XV.7, в). Сигнал поступает на ЦВМ, где реализована программа дифференцирования (XV. 14). Сигнал изображен на рис. XV.7, г. Далее дискретный сигнал поступает на преобразователь где он интерполируется по постоянному уровню. При этом образуется непрерывный сигнал о вид которого после сглаживания показан на рис. XV.7, д штриховой линией. Сигнал о представляет собой производную от входного непрерывного сигнала, т. е. а


Рис. XV.7. (см. скан) Виды сигналов в различных точках блок-схемы, изображенной на рис. XV, 51 б: а-д - во временной; к — в частотней областях

Перейдем к анализу прохождения сигналов в частотной области. Амплитудная характеристика непрерывного сигнала показана на рис. XV.7, е. Единичная последовательность импульсов в частотной области изображена на рис. XV.7, ж. В соответствии с формулой (XV. 13) после подстановки получим

откуда видно, что амплитудная характеристика дискретного сигнала состоит из бесконечного числа непрерывных сигналов в моменты (рис. XV.7, з). Сигнал на выходе (рис. XV.7, и).

После прохождения этого сигнала через преобразователь происходит его сглаживание, и преобразователь пропускает лишь основную гармонику сигнала Остальные гармоники при сглаживаются и практически не пропускаются преобразователем. Таким образом, бесконечный спектр превращается в конечный спектр

Для определения передаточной функции импульсного устройства воспользуемся выражением (XV. 13), откуда получим

Если после импульсного устройства установлен фильтр низких частот, не пропускающий гармоники от и выше, то на основании выражения (XV. 16) при можно получить передаточную функцию импульсного устройства в виде

откуда видно, что импульсное устройство (преобразователь представляет собой ключ мгновенного срабатывания, замыкаемый в тактовые моменты времени Схема подобного устройства в виде структурного элемента показана на рис. XV.8, а.

Передаточная функция ЦВМ при реализации на ней операции дифференцирования получается после применения к выражению (XV. 14) дискретного преобразования Лапласа:

откуда

На рис. XV.8, 6 показан структурный элемент, соответствующий полученной передаточной функции (XV. 18).

Рис. XV.8. Структурные элементы импульсных систем регулирования: а — преобразователь «аналог—код»; б - ЦВМ, реализующая операцию дифференцирования; в — преобразователь «код-аналог»

Рис. XV.9. Упрощенная принципиальная схема преобразователя «код—аналоги

Рис. XV. 10. Формы сигналов преобразователя «код-аналог», изображенного на рис. XV.9: а - на входе; б — на выходе

Для определения передаточной функции преобразователя «код—аналог» воспользуемся упрощенной принципиальной схемой, изображенной на рис. XV.9. В преобразователь входят импульсное устройство, два резистора конденсатор С и операционный усилитель [59]. В момент замыкания ключа конденсатор С быстро заряжается и «запоминает» поступающее на него напряжение, которое с течением времени уменьшается по некоторой экспоненциальной кривой. Формы входного и выходного сигналов преобразователя показаны на рис. XV. Пользуясь этими рисунками, запишем входные напряжения в тактовые моменты

где — постоянные коэффициенты.

Применим к уравнениям (XV. 19) преобразование Лапласа; тогда

откуда входной сигнал

Выходные напряжения в межтактовые моменты времени запишем в виде

Применим и к уравнениям (XV.22) преобразования Лапласа; тогда

Выходное напряжение также можно представить в виде следующей суммы сигналов:

Из выражений (XV.24) и (XV.21) найдем передаточную функцию преобразователя «код—аналог» в виде

откуда

Если принять, что постоянная времени велика, то и

Преобразователь «аналог—код», имеющий передаточную функцию (XV.27), называется преобразователем нулевого порядка. Такой преобразователь сглаживает выходной сигнал, запоминая величину входного импульса на период квантования. На рис. XV.8, в показана схема преобразователя реализующая передаточную функцию нулевого порядка.

Выведем еще раз передаточную функцию (XV.27) для преобразователя нулевого порядка. Представим прямоугольный импульс в виде суммы двух ступенчатых функций (рис. XV.11, а и б):

где

Рис. XV.11. Виды сигналов на выходе преобразователя нулевого и первого порядков при подаче на их вход единичного импульса и

Вхрдной сигнал запишем в виде

Применив к уравнениям (XV.28) и (XV.29) преобразование Лапласа, найдем передаточную функцию преобразователя «код—аналог» в виде

Полученное выражение полностью тождественно формуле (XV.27). Если сглаживание выходного сигнала выполнять с помощью трапеций, то преобразователь «код—аналог» принято именовать преобразователем первого порядка (рис. XV. 11, а и е). В этом случае выходной сигнал

а входной

Применим к уравнению (XV.30) преобразование Лапласа; тогда

откуда

и при получим

Пользуясь передаточными функциями (XV. 17), (XV.18) и (XV.27), можно составить структурную схему системы автоматического регулирования с ЦВМ, блок-схема которой показана на рис. XV.4. Структурная схема для данной системы приведена на рис. XV. 12. В этом случае в передаточную функцию ЦВМ введем множитель приводящий к реальному масштабу времени.

ЦВМ в системах автоматического регулирования работает всегда в реальном времени, т. е. в том времени, в котором находятся измерительные средства и объект регулирования. Для выполнения математических операций ЦВМ затрачивает время, равное Т, и после этого сигнал с выхода ЦВМ поступает через преобразователь «код—аналог» на объект регулирования. Например, для получения операции дифференцирования [см. формулу (XV.14)] необходимо брать разность будущего и текущего значений .

Рис. XV. 12. Структурная схема системы автоматического регулирования с ЦВМ, блок-схема которой изображена на рис. XV.4

Получение будущего значения вызывает сдвиг во времени Т на выходном регистре. Таким образом, реализация программы дифференцирования в реальном масштабе времени должна выполняться по формуле

откуда

1
Оглавление
email@scask.ru