Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
4. ПРИМЕНЕНИЕ МЕТОДА ГАРМОНИЧЕСКОЙ ЛИНЕАРИЗАЦИИ ДЛЯ АНАЛИЗА УСТОЙЧИВОСТИ НЕЛИНЕЙНЫХ СИСТЕМ АВТОМАТИЧЕСКОГО РЕГУЛИРОВАНИЯСущность метода гармонической линеаризации заключается в отыскании периодического решения на входе нелинейного элемента, разложении сигнала на выходе нелинейного элемента в ряд Фурье и его замене первой гармоникой. Такая замена справедлива, если система автоматического регулирования является фильтром низких частот, хорошо Гасящим колебания высших гармоник [5,15,60]. Рассмотрим блок-схему релейной системы автоматического регулирования (рис. XIV.22), принципиальная схема которой изображена на рис. XIV.1, а. На входе релейного элемента имеется синусоидальный сигнал вида
Рис. XIV.22. Блок-схема релейной системы регулирования температуры печи Сигнал на выходе трехпозиционного релейного элемента
где Ошибку в выходном сигнале относительно его приближенного значения запишем в виде
Функция
Подставив в формулу (XIV.65) выражения (XIV.62) — (XIV.64), получим
Запишем условия минимума средней квадратической ошибки при замене точного значения выходного сигнала
С учетом выражения (XIV.66) найдем
откуда
или
Из выражений (XIV.70) имеем
откуда
Полученные выражения (XIV.72) и (XIV.73) для коэффициентов гармонической линеаризации обеспечивают минимум средней квадратической ошибки при замене точной функции Для нелинейностей без гистерезиса (однозначных)
Линеаризуем однозначную нелинейность
Подставив в полученную формулу соотношение (XIV.61), найдем
или
Следовательно, коэффициент гармонической линеаризации представляет собой коэффициент усиления в виде отношения амплитуды первой гармоники выходного сигнала у к входному сигналу х, т. е.
На рис. XIV.23 показано графическое определение коэффициента гармонической линеаризации для однозначной нелинейности. Как видно из рис. XIV.23, синусоидальный вход сигнал
где В этом случае коэффициент гармонической линеаризации, определяемый по формуле (XIV.78), есть наклон прямой 1, равный а
Рис. XIV.23. Определение козфициента гармонической линеаризации идеальной релейной характеристики с воной нечувствительности что при таком подходе свойства нелинейного элемента эквивалентно отображаются в изменении коэффициента гармонической линеаризации в зависимости от амплитуды входного сигнала. В соответствии с формулой (XIV.78) нелинейность в дифференциальных уравнениях можно представить в виде следующего линеаризованного соотношения
Из соотношения (XIV.79) видно, что с изменением амплитуды входного сигнала изменяется коэффициент гармоничёскбй линеаризации, а следовательно, изменяется и значение Составим нелинейные дифференциальные уравнения для релейной системы автоматического регулирования температуры печи а виде
Пользуясь методом гармонической линеаризации, приведем данное нелинейное дифференциальное уравнение к гармонически линеаризованному. Вместо функции
Последнее уравнение, хотя и является линеаризованным, однако оно сохраняет основные свойства нелинейного уравнения, так как коэффициент а Перейдем к замене двузначной нелинейной функции
где
Из уравнения (XIV.61) найдем
откуда
Кроме того, из выражения (XIV.61) следует, что
Подставим выражения (XIV.84) и
Первый член соотношения (XIV.86) имеет тот же смысл, что и в уравнении (XIV.79), а второй член определяет запаздывание, зависящее от производной входного сигнала. Соотношение (XIV.86) можно переписать и в следующем виде:
Пйльзуясь Соотношением (XIV.87), гармонически линеаризуем нелинейное уравнение (XIV.80):
Дифференциальное уравнение (XIV.88) является гармонически линеаризованным. По аналогии с передаточными функциями линейных звеньев введем понятие эквивалентной передаточной функции нелинейного двузначного звена
бднозначного нелинейного звена
Соотношение (XIV.89) можно переписать и в виде
где Функции
Полученные зависимости (XIV.92) и (XIV.93) справедливы для двузначных нелинейностей. Для однозначных нелинейностей при
и
Графический способ определения частот и амплитуд автоколебаний в нелинейных системах (метод шаблонов) [49]. В основу метода шаблонов графического определения амплитуд и частот колебаний положено условие гармонического баланса. Для его нахождения воспользуемся характеристическим уравнением нелинейной системы, структурная схема которой изображена на рис. XIV.24, а:
где
Рис. XIV.24. Структурные схемы релейных (нелинейных) систем автоматического регулирования: а — с линейной и нелинейной частями в прямой цепи; б — с нелинейной частью в прямой цепи и линейной частью в цепи главной обратной связи; в — с линейной частью в прямой цепи и нелинейной частью в цепи главной обратной связи Передаточную функцию
где Подставим выражения (XIV.91) и (XIV.97) в уравнение (XIV.96); тогда получим
откуда нетрудно найти, что
или
Из уравнения (XIV. 100) получим следующие условия гармонического баланса:
или
Из соотношений (XIV. 102) видно, что при одновременном выполнении условий баланса для амплитуд и фаз в системе автоматического регулирования возникают автоколебания. Одновременность выполнения условий (XIV. 102) графически выражается в том, что точки пересечения амплитудных характеристик В системе с однозначной нелинейностью имеем
Условие (XIV. 103) возникновения периодического режима для такой системы заключается в одновременном пересечении амплитудных характеристик
Рис. XIV.25. Шаблоны для нелинейных элементов: а — идеального реле; б - реле с зоной нечувствительности; в — реле с гистерезисом; г - реле с гистерезисом и зоной нечувствительности В табл. XIV.2 и XIV.3 даны формулы для определения характеристик На рис. XIV.26 показаны различные положения шаблонов относительно частотных характеристик линейной части системы. При положении шаблона, показанном на рис. XIV.26, а, отсутствуют точки пересечения амплитудных и фазовых характеристик, следовательно, в такой системе регулирования не могут существовать периодические колебания. Перемещаем шаблон влево до тех пор, пока точки пересечения (кликните для просмотра скана) (кликните для просмотра скана) Рис. XIV.26. (см. скан) Логарифмические амплитудная и фазовая частотные характеристики линейной части системы с четырьмя различными положениями шаблонов для релейного элемента с гистерезисом и зоной нечувствительности Наличие двух частот колебаний Из рис. XIV.27 видно, что характеристика
Рис. XIV.27. Определение периодических решений в релейной системе автоматического регулирования колебаний воспользуемся критерием предложенным Е. П. Поповым [60]. В релейной (нелинейной) системе автоматического регулирования возникают автоколебания (устойчивые периодические решения), когда годограф Для установления характера колебаний можно пользоваться следующим критерием, предложенным для систем с двузначными нелинейностями [40]. В нелинейной системе автоматического регулирования с двузначными нелинейностями возникают автоколебания, если с ростом амплитуды А точка пересечения характеристик На рис. XIV.26, б точка, соответствующая увеличенному значению амплитуды, будет находиться в области между амплитудной частотной характеристикой системы и осью частот; следовательно, колебания с частотой со будут неустойчивыми. Рассмотрим колебания с частотой При анализе устойчивости нелинейных систем регулирования с нелинейностью типа насыщения можно пользоваться следующим критерием для определения типа колебаний. В системе регулирования наблюдаются автоколебания, если в точке пересечения логарифмической фазовой характеристики с линией Построение областей устойчивых и неустойчивых состояний в релейных системах. Для построения областей устойчивых и неустойчивых состояний релейной системы будем изменять параметры ее линейной и нелинейной частей. Накладывая соответствующие шаблоны на логарифмические характеристики системы, находим значения частот Проведем вертикальную прямую
Рис. XIV.28. Области устойчивых и неустойчивых состояний по параметрам для релейной системы автоматического регулирования
Рис. XIV.29. Структурные схемы релейных систем автоматического регулирования: а — без корректирующего устройства; б — с последовательным корректирующим устройством Пример XIV.8. Определить области устойчивых и неустойчивых состояний в релейной следящей системе с реальным трехпозиционным релейным элементом (рис. XIV.29, а) по параметру К. На рис. XIV.30, а построены логарифмические амплитудная и фазовая частотные характеристики при
Рис. XIV.30. Логарифмические амплитудная и фазовая частотные характеристики линейной части с двумя значениями коэффициента усиления и двумя положениями шаблона
Рис. XIV.31. Области устойчивых и неустойчивых состояний релейной - системы автоматического регулирования по нескольким значениям параметра К: а — по частоте автоколебаний; б - по амплитуде автоколебаний
Рис. XIV.32. Логарифмические амплитудно-фазовые частотные характеристики линейной части системы и характеристика Расширение областей устойчивых состояний в релейных системах имеет большое практическое значение, так как позволяет повысить точность их работы. С этой целью применяют последовательные или параллельные корректирующие устройства, включаемые в релейную систему. Для того чтобы более наглядно показать влияние корректирующих устройств на релейные системы, необходимо построить характеристики На рис. XIV.32 построены соответствующие характеристики при Пересечение этих характеристик указывает на наличие периодических режимов в системе регулирования. Включим в систему последовательное корректирующее устройство (см. рис. XIV.29, б) с передаточной функцией
В результате получим логарифмическую амплитудно-фазовую характеристику 3 рис. XIV.32, которая не пересекается с кривой 2, что указывает на отсутствие периодических режимов в рассматриваемой релейной системе.
|
1 |
Оглавление
|