Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
9. СПОСОБЫ ПОДАВЛЕНИЯ АВТОКОЛЕБАНИЙ В НЕЛИНЕЙНЫХ СИСТЕМАХКак было показано ранее, нелинейности различного рода в одноконтурных и двухконтурных системах автоматического регулирования являются причиной возникновения автоколебаний. Автоколебания для систем регулирования некоторых видов совершенно недопустимы, так как приводят к снижению точности системы или нарушению режима нормальной эксплуатации. Так, например, в следящих системах режим автоколебаний вызывает колебания объекта регулирования, что нарушает плавность режима слежения и недопустимо по требованиям эксплуатации. В высококачественных системах автоматического регулирования автоколебания недопустимы по требованиям точности и т. д. Для устранения режимов автоколебаний в системах регулирования применяют линейные или нелинейные корректирующие устройства. Линейные корректирующие устройства. С целью подавления автоколебаний в системе параметры линейных корректирующих устройств выбирают таким образом, чтобы условие баланса амплитуд и фаз не выполнялось. Рассмотрим логарифмические амплитудную 1 и фазовую 2 частотные характеристики линейной части системы. Они изображены на рис. XIV.48 штриховыми линиями. Как видно из этого рисунка, кривая 2 пересекает линию В точке
По Рис. XIV.48. (см. скан) Выбор последовательного линейного корректирующего устройства по логарифмическим фазовым частотным характеристикам В результате получают передаточную функцию корректирующего устройства дифференцирующего типа
или
где Логарифмическая амплитудная характеристика всей скорректированной системы построена на рис. XIV.48 (кривая 6). Нелинейные корректирующие устройства. Эти устройства могут быть двух типов: последовательные или параллельные. В качестве последовательного нелинейного корректирующего устройства рассмотрим два линейных звена, разделенных нелинейным элементом (рис. XIV.50). Передаточные функции линейных фильтров запишем в виде
где
Будем считать, что постоянные времени фильтра Определим напряжение
Возьмем некоторую частоту
Если
где В этом случае напряжение на выходе нелинейного корректирующего устройства
или
Рассмотрим диапазон частот
При этом следует иметь в виду, что
где Рис. XIV.49. (см. скан) Номограмма для определения типа, и параметров последовательного линейного корректирующего устройства Рис. XIV.50. (см. скан) Упрощенная принципиальная схема псевдолинейного корректирующего устройства Коэффициенты гармонической линеаризации для данного нелинейного корректирующего устройства при симметричности сигнала на входе нелинейности определяют с помощью следующего выражения:
где
Пользуясь этой формулой, найдем выражение для сигнала на выходе нелинейного корректирующего устройства:
Из выражения (XIV. 181) определим
где По формуле (XIV. 182) на рис. XIV.51 построены логарифмические эквивалентные амплитудные характеристики рассматриваемого нелинейного корректирующего устройства при Еще большие возможности по диапазону изменения амплитуд на входе нелинейности имеют параллельные нелинейные корректирующие устройства. Выбор корректирующего устройства такого рода рассмотрим на примере системы автоматического регулирования (рис. XIV.52, а). Введем в исходную систему, как это предложил Д. Шулкинд [76], параллельное корректирующее устройство, состоящее из линейной
Для выбора передаточных функций корректирующих устройств Условие 1. Будем считать, что нелинейное корректирующее устройство
При выполнении равенства (XIV. 184) условие устойчивости системы
можно представить в виде
или
Рис. XIV.51. Логарифмические приведенные эквивалентные амплитудные характеристики псевдолинейного корректирующего устройства
Рис. XIV.52. Структурная схема системы автоматического регулирования с нелинейностью: а — исходная; б — включением нелинейного параллельного корректирующего устройства Из выражений (XIV. 187) и (XIV. 188) следует, что Условие 2. Пусть
или, после объединения обеих нелинейностей в одну,
где Из уравнения (XIV. 190) получим соотношения, обеспечивающие условия гармонического баланса:
Путем соответствующего выбора характеристики Условие 3. Примем, что
где
Имея в виду соотношения (XIV. 192) и (XIV. 193), перепишем уравнение (XIV. 183):
Соответствующим выбором
или
т. е. при
Рис. XI V.53. Структурные схемы электрогидравлической следящей системы: а — исходная; б - с нелинейной коррекцией Условие 4. Будем считать, что выполняется лишь одно соотношение (XIV. 192); тогда уравнение (XIV. 183) можно записать в виде
откуда
или
Путем выбора коэффициента Пример Примем, что передаточные функции отдельных звеньев имеют следующий вид:
где Параметры следящей системы: Ширина полузоны люфта в механической передаче, приведенная к валу потенциометра,
Рис. XIV.54. Логарифмические амплитудная и фазовая характеристики электрогидравлической следящей системы логарифмические амплитудная (кривая 1) и фазовая (кривая 2) частные характеристики линейной части системы. На этом же рисунке показаны положения шаблонов (кривые 5, 6 и 7, 8), соответствующие периодическим режимам в системе. С ростом амплитуды точка Для устранения автоколебаний и неустойчивых колебаний в следящей системе выберем в качестве параллельного нелинейного корректирующего устройства тахогенератор с цепочкой RC и нелинейность типа насыщения (с зоной
и
где
где Из уравнения (XIV.203) найдем
Введем в уравнение (XIV.204) следующие обозначения:
где
Для использования логарифмических частотных характеристик выражение (XIV.205) перепишем в виде
Амплитудная характеристика
где
и фазовая
Рис. XIV.55. Логарифмические амплитудная и фазовые характеристики внутреннего контура электрогидравлической следящей системы Пользуясь полученными формулами, нетрудно вычислить функции Характеристика На этом же рисунке построены обратные функции Условия гармонического баланса можно получить из формул (XIV. 196) в виде
и
В соответствии с этими соотношениями геометрически сложим кривые 4 и 3 (рис. XIV.55) с кривыми 1 и 2 (рис. XIV.54); в результате получим характеристики
и будем его перемещать вдоль оси частот. Как видно из рис. XIV.54, нет точек пересечения линии 1 с кривой 3 шаблона, лежащих на одной вертикали с точками пересечения линии 2 с кривой 4 шаблона, что указывает на отсутствие периодических режимов в системе. Наглядной иллюстрацией этого положения служит рис. XIV.57, где построены функции Возможны и другие схемы включения нелинейных корректирующих устройств параллельного действия, подавляющих автоколебания в системах автоматического регулирования с люфтом. Например, хорошие результаты могут быть получены при включении двух нелинейных параллельных корректирующих устройств [50].
|
1 |
Оглавление
|