Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
5. СИНТЕЗ ПРИ СЛУЧАЙНЫХ ВОЗДЕЙСТВИЯХ, ПРИЛОЖЕННЫХ КО ВХОДУ СИСТЕМЫ (ЗАДАЧА ВИНЕРА)Постановка задачи [1], [6]. Рассмотрим частный случай общей задачи синтеза, изложенной в предыдущем параграфе, введя следующие допущения: 1) детерминированная составляющая входного сигнала равна нулю, т. е.
2) возмущающие воздействия
3) на время переходного процесса ограничения не накладываются или, как обычно принято говорить, решение ищется в классе систем с «бесконечной памятью», т. е. Таким образом, постановка задачи синтеза заключается в следующем. На вход системы поступает управляющее воздействие
Воздействия
Рис. VII.9. Структурная схема постановки задачи Винера Система должна осуществлять линейное преобразование полезного сигнала
где Требуется, пользуясь этими данными, найти импульсную переходную функцию
Данная задача синтеза оптимальных динамических характеристик была впервые сформулирована и решена Н. Винером и поэтому носит его имя. Результаты, полученные Н. Винером, легли в основу всех последующих методов синтеза динамических систем при случайных воздействиях. Физическое содержание задачи синтеза. Если на входе следящей системы, помимо управляющего, есть возмущающее воздействие (или помеха), то ошибка следящей системы состоит из двух составляющих. Одна из них вызывается тем, что следящая система не может абсолютно точно воспроизводить полезный сигнал Таким образом, задача синтеза состоит в том, чтобы обеспечить оптимальное решение вопроса, при котором сумма обеих состав ляющих имеет минимально возможное значение. Это можно пояснить следующим образом. Предположим, что амплитудная частотная характеристика
Рис. VII.10. Частотные характеристики и спектральные плотности сигналов, показывающие на эффект сужения и расширения полосы пропускания частот Возможны три способа решения задачи синтеза следящих систем при наличии помех. Первый и наиболее простой из них применим в том случае, когда полезный сигнал имеет гораздо более низкочастотный спектр, чем помехи (рис. VII. 11). В этом случае полоса пропускания системы должна быть выбрана достаточно широкой для обеспечения требуемой точности воспроизведения сигнала и в то же время достаточно узкой для того, чтобы она не реагировала на помехи [см. кривую
Рис. VII.11. Выбор полосы частот в случае высокочастотной помехи Второй способ выбора Согласно этому способу форма амплитудной частотной характеристики Таким образом достигается, с одной стороны, равномерное ослабление влияния всего основного спектра частот полезного сигнала на ошибку (так как в интервале частот, содержащем основную энергию сигнала, амплитудный спектр ошибки
Рис. VII.12. Выбор амплитудной частотной характеристики разомкнутой системы Наконец, третий способ синтеза, предложенный Винером, применим в общем случае, когда спектры частот полезного сигнала и помехи налагаются друг на друга так, как это изображено на рис. VII. 10, и имеют произвольную форму. Ввиду того, что последний способ дает наиболее строгий и общий подход к решению задачи сцнтеза не только следящих, но и других преобразующих систем при наличии помех, он и представляет собой предмет дальнейшего изложения. Формулы для оптимальной импульсной переходной и передаточной функций в случае задачи Винера и ее частные случаи. Интегральное уравнение (VII.71) при допущениях (VII.85)
где в общем случае
и
Формула (VII.88) получила название интегрального уравнения Винера (или Винера-Хопфа). Решение этого уравнения относительно оптимальной импульсной переходной функции полученное методом самосопряженных операторов [согласно уравнению (VII.83)] имеет вид
Заметим, что последнее выражение для Часто также применяют приведенную ниже форму решения интегрального уравнения (VI 1.88), полученную Н. Винером при помощи искусственного метода, который здесь не приводится (см. например, [1]). Предварительно введем в рассмотрение спектральные плотности
и
Если корреляция между полезным сигналом и помехой отсутствует, то формулы (VII.92)
Кроме того, введем в рассмотрение вспомогательную функцию
и предположив, что она содержит все нули и полюсы функции Общая формула для оптимальной передаточной функции при сделанных допущениях и принятых выше обозначениях имеет вид
или
где
b
Таким образом, определение оптимальной передаточной функции 1) определяются вспомогательные функции 2) подынтегральное выражение в интеграле (VII. 100) разлагается на простые дроби и с помощью вычетов находится функция 3) при помощи формулы (VII.99) вычисляется функция 4) определяется оптимальная передаточная функция по формуле (VI 1.98). Если спектральные плотности Из рис. VI 1.9 видно, что минимальное значение среднего значения квадрата случайной ошибки
Иногда может оказаться более удобной другая формула для Принимая во внимание выражения (VI 1.96) и (VI 1.98), из формулы (VII. 101) получим
но
и, следовательно,
|
1 |
Оглавление
|